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Abstract. This study investigates supply chain systems with an assembly feature. First we consider an  

unreliable make -to-stock (MTS) system, which is formulated as a multi-server unreliable assembly system 

with a machine interference characteristic. Second, we consider a hybrid make-to-stock and make -to-order 

(MTS-MTO) system where the supply is a kitting process and the final assembly process is unreliab le and is 

initiated according to order arrival. For both systems steady state performance measures were derived by 

using algorithmic procedures to solve the underlying quasi-birth-and-death (QBD) processes. Numerical 

examples are provided to study the performance of unreliable assembly systems when system parameters are 

changed. Then we use different search algorithms, including Genetic Algorithm, Simulated Annealing and 

Quasi-Newton to search for optimal operating rate and repairing rate under allowable capacity range. The 

objective is to solve the trade-off of costs related to inventory holding, order waiting, operating, and repairing.  

Interestingly, all three search methods obtain very close results. 
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1. INTRODUCTION 
Assembly process is a common practice in production 

systems. In the literature assembly p rocess is also referred to as 

“kitting process”. Stochastic assembly process relates to the 

problem of uncertainty inherent in component (or part) supply 

and assembly processes. Characteristics of stochastic assembly 

models (SAM) assume that there are at least two independent 

part supply processes with zero or non-negligib le assembly 

time. In the past, studies in SAM focus on theoretical derivation 

of versatile  models with d ifferent operating and distribution 

assumptions. 

Harrison (1973) showed that a sufficient and necessary 

condition for the queue of assembly production system to be 

stable is for the component buffers to be finite. Ramachandran 

and Delen (2005) relaxed the assumption of fin ite buffer 

capacity constraint on the input buffers, and showed that the 

system remains stable under fairly mild conditions. Altiok 

(1997) showed the equivalence of an assembly  production 

system and a tandem production system under block before 

process mode. Bonomi (1987) proposed an approximate 

analysis for a class of assembly-like queues with N inputs using 

a decomposition approach. Latouche (1981) p roposed matrix 

geometric method (MGM) for solving queues with paired 

customers. De Cuypere et al. (2013) assessed the impact of 

kitting  interruptions, bursty part arrivals and  phase-type 

distributed kit  assembly t imes on the behaviour o f the part 

buffers. Som et al. (1994) and Wilhelm and Som (1998, 1999) 

analyzed output stream of kits and kitting process with general 

distribution. 

The above literature studies reliable assembly systems 

only. Gao  et. al (2010) proposed unreliable analyt ical model for 

assemble to order system with zero kitting t ime. The authors 

analyzed the performance behavior when system parameters 

pertaining to arrival rate and failure rate were changed. Liu and 

Yuan (2001) and Yuan and Liu (2005) evaluated SAM through 

derivation of underlying quasi-birth-and-death (QBD) models 

for respective unreliable assembly systems with different 

kitting scenarios. On the other hand, for maintenance float 

design problems Lin and Chien (1995) used M/M/c/k queueing 

model to investigate optimal maintenance capacity in terms of 

server and repairmen  level. Zeng and Zhang (1997) used the 

same queueing model to investigated similar maintenance float 

problem with additional spare provisioning initiative to obtain 

optimal design of server, spares and repair capacity. The 

motivation of this study is that mathematical model to combine 

maintenance float design with SAM is not yet available , though 

it is not difficult to derive. The objective of this study is to 

blend these two isolated research streams into one analytical 

framework. The purpose of such formulation is to enhance the 

availability of the system such that the performance of 



 

unreliable SAM may be realized and hopefully such systems 

may  be improved through proper capacity design. Furthermore, 

pure make-to-stock (MTS) type production mode is fading 

during the past decades. Customized production according to 

specific customer order is gain ing its popularity. To cope with 

this trend, we modify the tradit ional MTS-based SAM with 

make-to-order to formulate a hybrid MTS -MTO production 

with unreliable assembly. With regards to hybrid MTS-MTO 

production model without assembly feature we refer to De 

Cuypere et al. (2012) and Jewkes and Alfa (2009). 

 

2. FAILURE-PRONE ASSEMBLY SYSTEMS  
 

In the following we formulate an MTS system with 

unreliable  assembly fo llowed by a hybrid MTS-MTO system 

with unreliably assembly. 

Notation 

𝑚 Number of machine 

𝑐  Number of repairmen 

𝑠 Number of spare machine 

𝑆 Maximum semi-finished product buffer level 

𝐽𝐴 Maximum part level for part supply A  

𝐽𝐵 Maximum part level for part supply B 

𝜆𝐴 Arrival rate for part supply A 

𝜆𝐵 Arrival rate for part supply B 

𝜃 Failure rate for production machine 

𝛼 Failure rate for spare machine 

𝜎 Repair rate for machine 

𝜆 External customer arrival rate 

𝑢 Assembly rate for a kit 

𝐈 Identity matrix with appropriate size 

𝐞 Column vector of all ones with appropriate size 

𝐴 System availability 

𝐿 Average order waiting level 

𝜙 System throughput 

𝐵1 Average part level in part buffer A  

𝐵2 Average part level in part buffer B 

𝑊 Average semi-finished product level 

 

2.1 Pure MTS System with unreliable assembly 
 

To represent the state space of the system we use the index 

scheme: (i , j, k)  as follows.  i  denotes system occupancy 

level. j denotes pairing (or kitting) level, which is indexed as 

JB − JA throughout this paper, k denotes available (operating) 

machine. 

 

2.1.1 Problem Description 

 

The scenario is like the one shown in figure 1. Two 

independent Poisson arrival streams with arrival rates λA and 

λB   are assumed for arrival processes of part A and part B 

respectively. Part  buffers for part A and B are fin ite with 

respective capacity JA  and JB.  When either of the part  buffer 

is full corresponding supplier is blocked from part supply. The 

blocking is removed until the part  level is less than respective 

maximal buffer level. When at least one part in respective 

buffer is available, a  kit  is formed  with  zero t ime and put into 

semi-finished product buffer for final assembly. The semi-

fin ished buffer is assumed infinite. Assume supply process is 

reliable while the assembly process is unreliable. There are m 

identical machines with failure rate θ.  c  repairmen are 

available for repairing failed machines. Assume  m ≥ c thus 

machine interference may happen when all repairmen are 

busy and machine failure happens. The system occupancy 

level here refers to semi-finished kitting products which need 

final assembly. Assume all random variables including 

production, failure, and repair times are mutually independent. 

Hereafter this is denoted as model 1. 

Figure 1: MTS with unreliable assembly 

 

2.1.2 QBD Models 

 

QBD Model and steady-state analysis for model 1 is

 as follows. 

𝐐 =

[
 
 
 
 
 
𝐀01 𝐀00

𝐀12 𝐀11 𝐀10

⋱ ⋱ ⋱
𝐀𝑚−1,2 𝐀𝑚−1,1 𝐀𝑚−1,0

𝐀2 𝐀1 𝐀0

⋱ ⋱ ⋱ ]
 
 
 
 
 

  (1) 

𝐀00
′ =

𝐽𝐵
𝐽𝐵 − 1

⋮
0
⋮

𝐽𝐴 − 1
𝐽𝐴 [

 
 
 
 
 
 
0 𝜆𝐴

0 ⋱
⋱ 𝜆𝐴

0
𝜆𝐵 ⋱

⋱ 0
𝜆𝐵 0 ]

 
 
 
 
 
 

 

𝐀00 = 𝐀00
′ ⨂𝐈𝑚+1                   (2) 



 

𝐀01
′ =

𝐽𝐵
𝐽𝐵 − 1

⋮
0
⋮

𝐽𝐴 − 1
𝐽𝐴 [

 
 
 
 
 
 
−𝜆𝐴

𝜆𝐵 ∗

⋱ ⋱
𝜆𝐵 0 𝜆𝐴

⋱ ⋱
∗ 𝜆𝐴

−𝜆𝐵]
 
 
 
 
 
 

 

where 

∗= −(𝜆𝐴 + 𝜆𝐵
) 

Define 

𝐐′ =

0
1
⋮

𝑚 − 1
𝑚 [

 
 
 
 

𝑏0 𝑐0

𝑎1 𝑏1 𝑐1

⋱
𝑎𝑚−1

𝑏𝑚−1 𝑐𝑚−1

𝑎𝑚 𝑏𝑚 ]
 
 
 
 

 

where for 𝑚 ≥ 𝑘 ≥ 0 

𝑎𝑘 = 𝑘𝜃, 𝑐𝑘 = 𝜎 ∙ 𝑚𝑖𝑛(𝑚 − 𝑘, 𝑐), 𝑏𝑘 = −(𝑎𝑘 + 𝑐𝑘
). 

Then 

𝐀01 = 𝐀01
′ ⨁𝐐′.                                (3) 

For 𝑚 ≥ 𝑗 ≥ 1 

𝐀𝑗2
′ = 𝑑𝑖𝑎𝑔{𝑢 ∙ 𝑚𝑖𝑛(𝑖, 𝑗), 0 ≤ 𝑖 ≤ 𝑚} 

𝐀𝑗2 = 𝐈⨂𝐀𝑗2                                      
′ (4) 

𝐀𝑗0 = 𝐀00                                          (5) 

𝐀𝑗1 = 𝐀01 − 𝐀𝑗2                                 (6) 

Finally 

𝐀0 = 𝐀𝑚0, 𝐀1 = 𝐀𝑚1, 𝐀2 = 𝐀𝑚2           (7) 

 

2.1.3 MGM Solution 

 

Herein we employ the technique illustrated in Neuts & 

Lucanton (1979) and Neuts (1994) fo r solv ing  the QBD 

problem with boundary transitions. The MGM solution 

composes of two parts: computation of root matrix 𝐑  and 

computation of stationary probability vector.  For functions (1) 

to (7), the boundary transition rate is not homogeneous. 

However, the transition remain  the same for occupancy level 

exceeding 𝑚 − 1 . Therefore the following characteristic 

equation must hold 

𝐀0 + 𝐑𝐀1 + 𝐑2𝐀2 = 𝟎.                        (8) 

Starting from 0, 𝐑  can be found from the following 

successive substitution until convergence criteria is met  

𝐑𝑘+1 = −(𝐀0 + 𝐑𝑘
2𝐀2

)𝐀1
−1.                (9) 

The convergence criteria can be either the maximum 

preset iteration or the difference between the previous solution 

and the current one is within some acceptable level, which one 

comes first. The MGM solution now becomes  

𝐱 𝑖 = 𝐱𝑚−1𝐑
𝑖+1−𝑚, 𝑖 > 𝑚 −

1.                       (10) 

where x is the stationary probability vector of (1). Now 𝐱𝑚−1 

can be found by solving the boundary condition  

𝒙𝟎𝑨𝟎𝟏 + 𝒙𝟏𝑨𝟏𝟐 = 𝟎, 
𝒙𝒊−𝟏𝑨𝒊,𝟎 + 𝒙𝒊𝑨𝒊,𝟏 + 𝒙𝒊+𝟏𝑨𝒊,𝟐 = 𝟎, 𝑚 − 2 ≥ 𝑖 ≥ 1,(11) 

𝒙𝒎−𝟏𝑨𝒎−𝟏,𝟎 + 𝒙𝒎−𝟏𝑨𝒎−𝟏,𝟏 + 𝒙𝒎−𝟏𝑹𝑨𝟐 = 𝟎. 

Applying the iterat ive method suggested by Neuts 

(1994), one can solve the probability vector of the boundary 

condition as follows. Introducing Δ0, Δi ,m − 1 ≥ i ≥ 1  as 

−diag(𝐀01
)  and −diag(𝐀 i,1),𝑚 − 1 ≥ i ≥ 1 respectively. 

Now (11) can be solved recursively by starting from 𝒙𝑖

(0)
= 𝛈 

(where 𝛈 is a very s mall number) until the maximum preset 

iteration or the difference between the previous solution and 

the current one is within some acceptable level, which one 

comes first as shown below. 

𝐱0

(𝑘+1)
= (𝐱0

(𝑘)
(𝐀01 + Δ0

) + 𝐱1

(𝑘)
𝐀12)Δ0

−1, 

 

𝐱 𝑖

(𝑘+1)
= (𝐱 𝑖−1

(𝑘)
𝐀 𝑖,0 + 𝐱 𝑖

(𝑘)
(𝐀 𝑖,1 + Δ𝑖 )+ 𝐱 𝑖+1

(𝑘)
𝐀 𝑖,2)Δ𝑖

−1 , 

𝑚 − 2 ≥ 𝑖 ≥ 1,                                   (1

2)

 
𝐱𝑚−1

(𝑘+1)
= (𝐱𝑚−2

(𝑘)
𝐀𝑚−2,0 + 𝐱𝑚−1

(𝑘)
(𝐀𝑚−1,1+Δ𝑚−1 + 𝐑𝐀2)) Δ𝑚−1

−1 . 

Together with the normalization equation  

∑ 𝐱 𝑖𝐞 + 𝐱𝑚−1
(𝐈 − 𝐑)−1𝐞 = 1,𝑚 −2

𝑖=0   

the stationary probability vector of boundary levels can be 

found. From (10) all the other probabilities can be obtained. 

 

2.1.4 Stability condition 

 

Under the stability condition of the studied QBD model 

𝛑𝐀 = 𝟎, 𝛑𝐞 =
1, 𝛑  is stationary probability vector of 𝐀, 𝐀 = 𝐀0 + 𝐀1 +
𝐀2.  

According to Neuts  (1994), the condition of a stable 

QBD model is  

𝛑𝐀0𝐞 < 𝛑𝐀2𝐞.                            (13) 

It is difficult to derive closed-form solution for such 

condition. Numerical method may be applied to see if the 

model under study is stable. 

 

2.1.5 Performance measures 

 
Let  

 𝐩 = 𝒙𝒎
(𝐈 − 𝐑)−𝟏 

 𝐪 = ∑ 𝒙𝒊 +𝒎−𝟐
𝒊=𝟎 𝒙𝒎−𝟏

(𝐈 − 𝐑)−𝟏 

Then system availability is 



 

𝐴 =
∑ ∑ ∑ 𝑘𝑞𝑖𝑗𝑘

𝑚
𝑘=1

𝐽𝐵
𝑗=−𝐽𝐴

𝑆
𝑖=0

𝑚
                          (14) 

Applying the expectation operation we obtain expected level 

for semi-finished product. 

 

W = ∑ 𝑖𝑚−2
𝑖=1 𝒙𝑖𝐞 + 𝒙𝑚−1((𝑚 − 1)(𝐈 − 𝐑)−1 + 𝐑(𝐈 − 𝐑)−2)𝐞

(15) 

Throughput and average part buffer are 

𝜙 = ∑ ∑ ∑ 𝑥 𝑖𝑗𝑘 𝑚𝑖𝑛(𝑖, 𝑘) 𝑢

𝑚

𝑘=1

𝐽𝐵

𝑗=−𝐽𝐴

𝑚−1

𝑖=1

+ ∑ ∑ 𝑝𝑗𝑘 𝑘𝑢

𝑚

𝑘=1

𝐽𝐵

𝑗=−𝐽𝐴

 

(16) 

𝐵1 = ∑ ∑ (−𝑗)𝑞𝑗𝑘
𝑚
𝑘=0

−𝐽𝐴
𝑗=−1             (17) 

𝐵2 = ∑ ∑ 𝑗𝑞𝑗𝑘
𝑚
𝑘=0

1
𝑗=𝐽𝐵

           (18) 

 

2.2 Hybrid MTS-MTO with unreliably assembly 

 

We use the same index scheme as in 2.1 but with 

different meaning. Here occupancy level refers to external 

arrival order, which is denoted as  𝑙. For each occupancy 

level ( 𝑙), 𝑖  denotes semi-finished product level;  𝑗  is the 

same as 2.1; 𝑘 denotes number of machine waiting for repair. 

 

2.2.1 Problem Description 

 

The scenario is like the one shown in figure 2. The part 

supply process and basic assumptions are the same as model 1. 

However, the semi-finished buffer is now assumed finite with 

fixed capacity S. Assume when semi-finished product buffer 

is full supplier is blocked from supply material. The blocking 

is removed when the semi-finished product level is less than 

maximal semi-fin ished product level. Assume external 

customer order arrives according to a Po isson process with 

rate λ. Assembly production starts only when order buffer is 

not empty, machine is available, and semi-finished buffer is 

not empty. To enhance the system availability spare inventory 

with capacity s is installed. Assume failure rates for spares 

are α,  which is smaller than θ  to represent the warm 

standby case in reliability literature.  Hereafter this is denoted 

as model 2. 

 

Figure 2: Hybrid MTS-MTO with unreliable assembly 

 

2.2.2 QBD MODELS 

 

The QBD Model for model 2 is 

Q̃ =

[
 
 
 
 
 
 
𝐀01 𝐀0

𝐀12 𝐀11 𝐀0

⋱ ⋱ ⋱

𝐀m−1,2
𝐀m−1,1 𝐀0

𝐀2 𝐀1 𝐀0

⋱ ⋱ ⋱ ]
 
 
 
 
 
 

    (19) 

The failure rate when k servers are under repair is 

λk = {
mθ + (s − k)α,
(s + m − k)θ,

  0 ≤ k ≤ s,
  s + 1 ≤ k ≤ s + m.

 

The repair rate when k servers are under repair is 

σk = {
kσ, 1 ≤ k < c,
cσ, c ≤ k.

 

Define 

𝐐′

=

0
1
⋮
s

s + 1
⋮

s + m − 1
s + m [

 
 
 
 
 
 
 
 
∗ λ0

σ1 ∗ λ1

⋱ ∗ ⋱

σs ∗ λs

σs+1 ∗ λs +1

⋱ ∗ ⋱
σs+m−1 ∗ λs+m−1

σs +m ∗ ]
 
 
 
 
 
 
 
 

 

   (20) 

where 

∗= −(λk + σk
), 0 ≤ k ≤ s + m 

Then 

𝐀0 =  λ𝐈              

𝐀01 =

𝟎
𝟏
⋮

𝑺 − 𝟏
𝑺 [

 
 
 
 
 𝐀 01

′ 𝐀00
′

𝐀01
′ 𝐀00

′

⋱ ⋱
𝐀01

′ 𝐀00
′

𝐀01
′′ ]

 
 
 
 
 

− 𝐀𝟎     (21) 

𝐀00
′ = 𝐀00

′ ⨂𝐈  

𝐀01
′ = 𝐀01

′ ⨁𝐐 ′  

𝐀01
′′ = 𝐈⨂𝐐′ 

Where 𝐀01
′  and 𝐀00

′  are the same as in 2.1.2. 

For 𝑚 ≥ 𝑙 ≥ 1 the processing rate when 𝑘 servers are 



 

under repair, 𝑖 semi-finished products are available and 𝑙 
external demands are queued to be served is  

𝑢𝑙,𝑘
𝑖 = {

𝑚𝑖𝑛(𝑚, 𝑖, 𝑙)𝑢,
𝑚𝑖𝑛(𝑠 + 𝑚 − 𝑘,𝑖, 𝑙)𝑢,

𝑠 ≥ 𝑘 ≥ 0,
  𝑠 + 𝑚 ≥ 𝑘 ≥ 𝑠 + 1.

 

Denote 

𝐀 𝑙2
𝑖 = 𝑑𝑖𝑎𝑔{𝑢𝑙 ,𝑘

𝑖 , 0 ≤ 𝑖 ≤ 𝑆, 0 ≤ 𝑘 ≤ 𝑠 + 𝑚} 

Consider the relation between 𝑙 and  𝑘 first and then 

consider their relation with 𝑖, 𝐀 𝑙2
𝑖  can be simplified as 

𝐀 𝑙2
𝑖 = 𝑑𝑖𝑎𝑔 {

𝑚𝑖𝑛(𝑖, 𝑙)𝑢,⋯ , 𝑚𝑖𝑛(𝑖 , 𝑙)𝑢, 𝑚𝑖𝑛(𝑖, 𝑙 − 1)𝑢,
⋯ , 𝑚𝑖𝑛(𝑖, 2)𝑢, 𝑚𝑖𝑛(𝑖, 1)𝑢, 0

} 

𝐀 𝑙2 =

0
1
⋮

𝑆 − 1
𝑆 [

 
 
 
 
 

𝟎
𝐈⨂𝐀 𝑙2

1 𝟎

⋱ ⋱
𝐈⨂𝐀 𝑙2

𝑆−1 𝟎

𝐈⨂𝐀 𝑙2
𝑆 𝟎 ]

 
 
 
 
 

     (22) 

𝐀 𝑙1 = 𝐀01 − 𝑑𝑖𝑎𝑔(�̃� 𝑙2𝐞)                  (23) 

𝐀0 = 𝐀𝑚0, 𝐀1 = 𝐀𝑚1, 𝐀2 = 𝐀𝑚2           (24) 

To solve (19) to (24) we again apply the MGM solution 

together with iterative method for solving boundary equations. 

Alternatively, we can use another recursive method as 

illustrated in Neuts (1994) for solving boundary equations. 

The detail is omited. The stability condition is similar to 2.1.4 

. 

2.2.3 Performance Measures 

 

Applying the same expectation formula as in 2.1.5 it is 

easy to obtain system occupancy level for external order L as 

in (15). The average semi-finished product is  

W = ∑ ∑ ∑ 𝑖𝑠+𝑚
𝑘=0

−𝐽𝐴
𝑗=𝐽𝐵

𝑆
𝑖=1

𝑞 𝑖𝑗𝑘                            (25) 

where 𝐪 is the same as in 2.1.5. Derivation for B1  B2  is 

similar to 2.1.5. 

 

3. OPTIMAL CAPACITY DESIGN  

 

In the optimizat ion procedure we assume part supply rate, 

order arrival rate, and machine failure rate are uncontrollable. 

These assumptions are reasonable in reality. Assume all other 

system parameters are controllable, For model 1 our object ive 

is to trade-off throughput revenue with costs related to part 

inventory, semi-fin ished product inventory and machine and 

repair operat ion by optimizing the part buffer size, machine 

number, repairmen number, production rate, and repair rate. 

The objective function is expressed as (26). 

Model 1 Optimization problem: 

𝑀𝑎𝑥 𝑇𝑃 = 𝑝𝜙 − [𝑐ℎ(𝐵1 + 𝐵2)+ 𝑐𝑤𝑊 + 𝑐𝑚𝑚 + 𝑐𝑐𝑐

+ 𝑐𝑢𝑢 + 𝑐𝜎𝜎]                (26) 

In (26), p is per unit selling price. ch is per unit holding 

cost per unit t ime for part  buffer. cw  is per unit  per unit time 

for semi-finished product. cm  and cc  are per unit accrued 

machine investment and repairman h iring cost per unit time. cu 

and cσ are  per unit  production and repair cost. Furthermore, 

decision maker may have to consider other common interest 

such as maintain ing system availability to some desired level. 

For model 2 we want to trade-off additional spare investment 

cost and external order wait ing cost in addition to afore-

mentioned costs. Here the throughput is not of concern since 

we assume external arrival rate is fixed. Our objective function 

is expressed as (27). 

Model 2 Optimization problem: 

𝑀in 𝑇𝐶 = 𝑐ℎ(𝐵1 + 𝐵2)+ 𝑐𝑤𝑊 + 𝑐𝑙𝐿 + 𝑐𝑚𝑚 + 𝑐𝑐𝑐 + 𝑐𝑠𝑠 +

𝑐𝑢𝑢 + 𝑐𝜎𝜎

                                               (27) 

Here cl is order waiting cost per unit per unit time. cs is 

per unit accrued spare investment cost per unit time.  Since all 

the performance measures and system stability are related to 

system design parameters , it becomes extremely complicated if 

not impossible if we use traditional optimizat ion method such 

as Lin and Chien (1995) and Zeng and hang (1997) to derive 

optimality. Therefore we propose a combined enumeration and 

global search algorithm as listed in figure 3 fo r the optimization 

problem of model 2. 

 

 

Let  𝑓∗ = ∞. Set upper-bound and lower bounds  �̅� and 𝑥 for 

𝐽𝐴, 𝐽𝐵, 𝑆,𝑚, 𝑐, 𝑠,𝑢,σ, respectively. 

For 𝐽𝐴 = 𝐽𝐴 to 𝐽�̅� 

For 𝐽𝐵 = 𝐽𝐵 to 𝐽�̅� 

For 𝑆 = 𝑆 to �̅� 

For 𝑚 = 𝑚 to �̅� 

For 𝑐 = 𝑐 to 𝑐̅ 

For 𝑠 = 𝑠 to �̅� 

 Apply meta-heuristics or quasi-Newton search. 

If stability condition not met, Then 

𝑓(𝐽
𝐴,
 𝐽

𝐵
,𝑆, 𝑚, 𝑐, 𝑠, 𝑢,σ, ) = ∞, 

            End 

            If 𝑓(𝐽
𝐴,

 𝐽
𝐵
, 𝑆,𝑚, 𝑐, 𝑠,𝑢, σ,) < 𝑓∗ ,Then  

              𝑥∗ = (𝐽𝐴,  𝐽𝐵 ,𝑆, 𝑚, 𝑐, 𝑠, 𝑢, σ). 

            End 

          End 

        End 

      End 

    End 

  End 



 

End  

Figure 3 Pseudo-code of our optimization algorithm 

 

Since the search space is continuous for each capacity 

enumeration we use Genetic Algorithm (GA) for continuous 

variable and Simulated Annealing (SA) to search for 𝑢, 𝜎 , 

which is listed in figures 4 and 5. 

 

Step 1 Generate in itial random population of 

chromosomes between allowable range of 

operating rate and repairing rate. 

Step 2 When maximum iteration not met do the following: 

Step 2a Sort according to the fitness value in ascending 

order. Select only some best chromosomes to mate 

using rank weighting. 

Step 2b Crossover operation. 

Step 2c Mutation operation. 

Step 3 Report the first (which is the best) solution. 

Figure 4 GA for our continuous variable search 

In Step 2b we use the following linear random 

combination for exp loring new values assuming there are n 

genes for each chromosome and crossover happens at jth 

variable (gene). 

𝑥1𝑗 = 𝑥1𝑗 − 𝛽(𝑥1𝑗 − 𝑥2𝑗) 

𝑥2𝑗 = 𝑥2𝑗 + 𝛽(𝑥1𝑗 − 𝑥2𝑗) 

Before crossover 

Parent1: 𝑥11 ⋯ 𝑥1,𝑗−1 𝑥1𝑗 𝑥1,𝑗+1 ⋯ 𝑥1,𝑛1 

Parent2: 𝑥21 ⋯ 𝑥2,𝑗−1 𝑥2𝑗 𝑥2,𝑗+1 ⋯ 𝑥2,𝑛1 

After crossover 

Child1: 𝑥11 ⋯ 𝑥1,𝑗−1 𝑥1𝑗 𝑥2,𝑗+1 ⋯ 𝑥2,𝑛1 

Child2: 𝑥21 ⋯ 𝑥2,𝑗−1 𝑥2𝑗 𝑥1,𝑗+1 ⋯ 𝑥1,𝑛1 

 

Step 1 Let p = 0, k = 0. Choose starting solution 

xk and an initial temperature Tp . 

Step 2 Do the following until the maximum iteration for 

current temperature is  met. 

Step 2a Search for new random solution xk+1. Calculate 

∆f = f(xk+1) − f(xk).  

Step 2b If ∆f ≤ 0, update xk+1 as new current solution. 

Else update xk+1 as new current solution with  

probability e−∆f/ Tp
. 

Step 2c k = k + 1. Repeat step 2a. 

Step 3 Reduce temperature using appropriate 

procedure. p = p + 1. Repeat step 2. 

Figure 5 SA search 

We refer to Lindfield and Penny (2012) when 

implementing the above search algorithms. Quasi-Newton 

procedure for searching u, σ undue each enumeration is listed 

in figure 6 (cf. Wang, 2015). 

 

Step 1 Choose an init ial solution vector  u
(0)

.  Set  

tolerance level ϵ,  and init ial guess of Hessian, 
usually we let 𝐇

(0)
= 𝐈. Let n = 0. 

Step 2 Calculate search direction  𝐝  from the following 

simultaneous equation:  𝐇
(n)

𝐝 = −f ′(𝐮
(n)). Find  

next solution𝐮
(n+1)

 along 𝐝  using optimal local 

search. 

Step 3 If f ′(𝐮
(n+1))[f ′(𝐮

(n+1))]
T

< ϵ,Stop, optimum 𝐮 =

𝐮
(n+1)

. Else go to step 4. 

Step 4 Calculate∆𝐮 = 𝐮
(n+1)

− 𝐮
(n)

and 

∆𝐠 = f ′(𝐮
(n+1))− f ′(𝐮

(n)). Update 

 
𝐇

(n+1)
=  𝐇

(n)
+

∆𝐠(∆𝐠)T

(∆𝐠)T∆𝐮
−

𝐇
(n)

∆𝐮(∆𝐮)T𝐇
(n)

(∆𝐮)T𝐇 (n)∆𝐮
.  

n = n + 1.Repeat  step 2. 

Figure 6 Pseudo-code of Quasi-Newton 

 

4. NUMERICAL EXAMPLES 

 

For brevity we only report some experimental results. 

First we use the derivation in section two to investigate the 

performance of the models. Then we illustrate the 

optimization of model 2. We use the following parameter 

setting for model 1: 

2 ≤ 𝐽A,   𝐽B ≤ 5, 𝑆 = ∞, 𝑚 = 3, 𝑐 = 2, 𝜆A = 𝜆B = 2.5, 

𝜃 = 1, 𝑢 = 5, 𝜎 = 1. 
For model 2, we set the parameters as  

2 ≤ 𝐽A = 𝐽B = 𝐽 ≤ 5,3 ≤ 𝑆 ≤ 7, 𝑚 = 2, 𝑐 = 2, 𝑠 = 2, λ = 1, 
𝜆A = 𝜆B = 2.5, 𝜃 = 1, α = 0.5, 𝑢 = 1.25, 𝜎 = 1. 

Figure 7 refers to model 1. Figure 8 to 10 refer to model 2. 

Both experiments pass stability test in (13). Note that due to 

symmetry B1 = B2 = B.  Figure 7 shows more part buffer 

contribute to more semi-finished products. Figures 8 and 9 

show more S and J reduce order occupancy but increase 

average work-in -process which include part and semi-fin ished. 

This is reasonable since more buffers reduce the blocking and 

contribute to quick order consumption. From Figures 8 and 9 

we see the apparent trade-off effect  between L and WIP. If only 

costs related to these two factors are concerned, i.e., Min TC =
ch

(2B) + cwW, figure 10 shows (J, S)=(2, 5) is optimal for 

ch = cw = 1, cl = 10. 
Now We use (27) to optimize model 2. First we observe 

more production and repair capacity reduce order occupancy 

with the price of more capacity investment cost. The final result 

will depend on trade-off between buffer capacity (J, S), 

capacity investment (m, c, s), and rates (u, σ). To experiment 

we use the following parameter setting: 

 𝑐ℎ = 𝑐𝑤 = 1, 𝑐𝑙 = 10, 𝑐𝑚 = 𝑐𝑐 = 𝑐𝑠 = 5, 𝜆𝐴 = 𝜆𝐵 = 2.5, 
𝜆 = 1,𝑐𝑢 = 𝑐𝜎 = 2, 𝜃 = 1,𝛼 = 0.5. 



 

Figure 7: Expected WIP (W) under different 𝐽A  and 𝐽B 
 

Figure 8: Occupancy level (L) under different J and S 

 

 
Figure 9: Expected WIP (W+2B) under different J and S 

Figure 10: TC as a function of J and S 

 

For demonstration purpose, assume the fo llowing 

capacity range: 

1≤ J, S, m, c, s ≤ 2,1 ≤ u, σ ≤ 20. 
The result is shown in table 1. Denotation of superscript 

numbers in table 1 is 1: u, 2: σ, 3: TC. In the table besides 

GA, SA we use QN to denote Quasi-Newton search. 

Interestingly all numerical search procedures obtain very 

close results : [J, S, m, c, s] = [2, 2, 1, 1, 1]  with [u, σ]  near
[4.3, 2.6] is optimal. The minimal cost is 39.35.  

 

5. Discussion 

 

We model unreliable stochastic assembly systems 

extended Latouche (1981). To conclude, we propose a queueing 

model combining maintenance float design with stochastic 

assembly model which is new in the literature. We derive both 

pure MTS and hybrid MTS-MTO control mechanis ms under 

the common matrix analytical development framework. After 

performance evaluation we use traditional search method and 

state-of-the-art meta-heuristics to search for optimal rates. The 

homogeneity of the numerical result indicates the proposed 

search methods are capable of finding optimal (or near optimal) 

solution in reasonable computation time for sophisticated 

queueing problems where objective function values are not 

explicit ly expressed but instead derived from a numerical 

procedure.  

However, the cases of more than two suppliers, multi-

stage, and non-exponential processing are often encountered 

in real applicat ions. To handle the above situations, we also 

develop another generalized stochastic Petri net  (GSPN) 

model. We numerically verify the equivalence between the 

proposed mathemat ical and GSPN models. Although GSPN 

model can be used to exp lore non-exponential service t imes, 

N ( ≥ 2) suppliers and mult i-stage problem, the long 

computation time and curse of dimensionality problem when 



 

state space becomes large remain to be solved in the future 

study. 
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Table 1: Optimal capacity design for hybrid MTS-MTO with unreliable assembly model 

 
𝐽 𝑆 𝑚 𝑐  𝑠 GA SA QN 

1 1 1 1 1 7.85 1 3.66 2 56.76 3 7.87 1 3.66 2 56.76 3 7.84 1 3.65 2 56.76 3 

1 1 1 1 2 7.64  3.20  59.75  7.58  3.19  59.75  7.59  3.18  59.75  

1 1 1 2 1 7.70  2.56  58.77  7.69  2.57  58.77  7.69  2.57  58.77  

1 1 1 2 2 7.47  2.03  61.77  7.42  2.05  61.76  7.44  2.04  61.76  

1 1 2 1 1 7.63  3.28  60.53  7.66  3.43  60.53  7.66  3.43  60.53  

1 1 2 1 2 7.61  3.23  64.66  7.52  3.24  64.66  7.54  3.25  64.66  

1 1 2 2 1 7.46  2.17  62.26  7.49  2.20  62.26  7.49  2.20  62.26  

1 1 2 2 2 7.44  1.99  66.41  7.39  1.98  66.41  7.39  1.98  66.41  

1 2 1 1 1 4.58  2.81  41.68  4.59  2.81  41.68  4.58  2.82  41.68  

1 2 1 1 2 4.44  2.71  45.47  4.39  2.57  45.46  4.41  2.57  45.46  

1 2 1 2 1 4.51  1.91  44.30  4.49  1.95  44.30  4.49  1.94  44.30  

1 2 1 2 2 4.32  1.56  47.99  4.30  1.64  47.99  4.31  1.63  47.99  

1 2 2 1 1 3.76  2.83  44.74  3.80  2.83  44.74  3.81  2.83  44.74  

1 2 2 1 2 3.65  2.75  49.17  3.68  2.75  49.17  3.70  2.75  49.17  

1 2 2 2 1 3.45  2.18  47.22  3.71  1.80  47.02  3.68  1.81  47.02  

1 2 2 2 2 3.78  1.72  51.37  3.57  1.69  51.37  3.56  1.69  51.37  

2 1 1 1 1 6.35  3.24  48.82  6.38  3.25  48.82  6.41  3.22  48.82  

2 1 1 1 2 6.15  2.94  52.20  6.17  2.88  52.19  6.19  2.86  52.19  

2 1 1 2 1 6.25  2.27  51.17  6.26  2.26  51.17  6.28  2.26  51.17  

2 1 1 2 2 6.12  1.83  54.47  6.08  1.83  54.47  6.06  1.84  54.47  

2 1 2 1 1 6.18  3.34  52.94  6.28  3.08  52.87  6.25  3.08  52.87  

2 1 2 1 2 6.10  2.89  57.19  6.14  2.96  57.19  6.15  2.95  57.19  

2 1 2 2 1 6.15  1.94  54.91  6.12  1.97  54.91  6.10  1.97  54.91  

2 1 2 2 2 6.01  1.81  59.20  6.04  1.80  59.20  6.01  1.81  59.20  

2 2 1 1 1 4.36  2.56  39.35  4.33  2.65  39.35  4.32  2.64  39.35  

2 2 1 1 2 4.16  2.44  43.24  4.17  2.43  43.24  4.16  2.43  43.24  

2 2 1 2 1 4.61  1.72  42.18  4.22  1.82  42.12  4.23  1.83  42.12  

2 2 1 2 2 4.23  1.73  45.93  4.06  1.55  45.89  4.05  1.55  45.89  

2 2 2 1 1 3.55  2.67  42.45  3.55  2.68  42.45  3.55  2.67  42.45  

2 2 2 1 2 3.40  2.56  46.94  3.43  2.63  46.94  3.45  2.61  46.94  

2 2 2 2 1 3.43  1.76  44.87  3.41  1.73  44.87  3.42  1.72  44.87  

2 2 2 2 2 3.18  1.61  49.27  3.32  1.61  49.26  3.30  1.62  49.26  

CPU time (in seconds) 850.40 7006.64 104.39 


