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Abstract. Two types of outpatients, that is, scheduled patients and walk-ins, arrive at a hospital. The hospital has 

multiple service points, that is, one consultation room and several examination rooms. Each patient goes to the 

consultation room first, and some of them visit other service points before consulting the physician again. The 

arrival of walk-ins, the duration of each service, and the visiting route of service points are uncertain. The objective 

function consists of three terms with appropriate weights to combine them; the average waiting time for the first 

consultation of a scheduled patient, that of a walk-in, and the average total waiting time of a patient requesting 

the second consultation. The problem of sequencing patients waiting for consultation is focused, assuming that 

other service points adopt FCFS. To alleviate the stress of waiting, up to a pre-fixed number of waiting patients 

are displayed to indicate the consultation sequence. The consultation sequence is decided by a dispatching rule, 

and the rule is generated by genetic programming (GP). The simulation experiments indicate that the rules 

produced by GP can be reduced to simple fixed ordered rules. It also indicates that the increase of the maximum 

display length deteriorates the objective function value.  
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1. INTRODUCTION 
 

Minimizing the staying time of outpatients in hospitals 

may be the benefit of all patients and hospitals. Hospitals are 

eager to minimize the waiting time of patients to reduce the 

physical and mental suffering of patients, and to utilize the 

limited space of the hospitals effectively. Staying longer in a 

hospital may increase the risk of many kinds of infectious 

diseases for patients. Therefore, the minimization of the 

waiting time of patients is a reasonable objective. With the 

advance of medical technology, patients are often requested to 

visit several service points such as taking blood samples, 

conducting a urine test, X-ray examination, and an ultrasound 

scanning, before or after consulting their physicians, especially 

in medium and large scale hospitals. The visiting route of 

service points depends on the condition of each patient, and its 

service time is also stochastic. Several service points are a 

single server mode because of expensive equipment and/or a 

limited number of clinical experts in handling equipment. In 

addition, the arrival of patients is not deterministic, even if the 

major part of the outpatients arrive at the hospital with an 

appointment. 

In the present study, the problem of minimizing the 

waiting time of patients in a hospital is considered. If each 

service point is considered as a machine, and each patient is a 

job, then the problem can be considered as a job shop 

scheduling problem under the dynamic arrival of jobs and the 

objective is to minimize the average waiting time. Needless to 

say, it is practically impossible to obtain the optimal solution 

because of the stochastic nature of the problem, in addition to 

the complex flow of jobs. From the practical viewpoint, simple 

procedures are attractive, even if the performance of the 

procedures does not produce near-optimal solutions. One 

important difference between patients and jobs is the existence 

of emotion in patients. It is important to minimize the 

occurrence of a situation that a patient feels unfairness while 

waiting for the service. One typical example is a case that a 

patient who has just arrived is called first even if there are 

waiting patients. Nevertheless, the problem is not solved by 

applying a simple FCFS (first-come, first-served) discipline, 

because there are multiple types of patients in general. In the 

present study, two types of patients, that is, scheduled patients 

and walk-ins are considered. A scheduled patient tends to 

arrive at the hospital near his or her scheduled time, and if he 

or she arrived earlier than his or her scheduled time, and the 

current time is later than the scheduled time, it is generally 



 

 

recognized that he or she has priority over walk-ins. However, 

it is also important to give priority to walk-ins, or patients 

requesting the second consultation to realize the reasonable 

allocation of waiting times among patients. Morikawa et al. 

(2013) discuss the situation that a physician pays attention to 

the waiting time of both scheduled patients and walk-ins. In 

minimizing the waiting time of patients, finding a balanced 

allocation of waiting times among different types of patients, 

by using a simple procedure if it is possible, is a challenging 

research issue. The present study attempts to find a dispatching 

rule for selecting the next patient in front of the consultation 

room by the aid of genetic programming (GP). Simulation 

experiments indicate that at the end of the GP procedure that 

generates and then investigates numerous rules, simple 

dispatching rules are judged as effective for minimizing the 

weighted sum of waiting times under the investigated 

environment. 

 

2. BRIEF LITERATURE REVIEW 
 

The problem considered in the present study can be 

connected to appointment scheduling in terms of the 

minimization of waiting time of outpatients. In appointment 

scheduling, the conflicting objectives of minimizing the 

waiting time of patients, minimizing the total idle time of the 

physician, and minimizing the overtime are often involved in 

the problem. Related studies are classified and reviewed by 

Cayirli and Veral (2003), and Gupta and Denton (2008). The 

allocation of appointment times for appointment requests is the 

primal issue of the appointment scheduling, and there are two 

types of rules to generate appointment times; individual 

appointment rules and block appointment rules (Ho and Lau, 

1992). The former rules can assign any appointment time for 

each patient, while the latter rules adopt the starting time of a 

block, assuming that the session is divided into several blocks 

in advance and each block can accept multiple patients. The 

present study assumes that the session is divided into several 

blocks, and scheduled patients arrive at the hospital based on 

their appointment time. 

Many recent research papers consider the appointment 

scheduling under advanced-access environment. Under this 

environment, patients can make an appointment on the 

morning of the day (Murray and Berwick, 2003; Murray and 

Tantau, 2000). As the arrival of appointment requests is 

uncertain, thus preparing capacity for stochastic demand, and 

allocating each arriving appointment request to one of open 

slots or assigning an appointment time for each request is a 

hard task. No-shows and cancellations are also sources of 

under-utilization of resources, and thus overbooking is adopted 

as a countermeasure against these phenomena. Accepting 

walk-ins can be considered as a passive method to improve the 

utilization of resources. A limited list of recent papers that 

discuss these issues and propose solution models include 

Cayirli and Yang (2014), Chen and Robinson (2014), 

Morikawa et al. (2015), Peng et al. (2014), Robinson and Chen 

(2010), and Truong (2015). 

In appointment scheduling, it is generally assumed that 

each patient requests a single type of service, and leaves the 

hospital after receiving the requested service. However, 

Kopach et al. (2007) analyze the patient flow, and include the 

following four service points in their simulation study; check-

in, physician consult, nurse consult, and check-out. Koizumi et 

al. (2005) also discuss the patient flow, but they focus on the 

flow among multiple hospitals and facilities, not within a 

hospital. 

 The present study assumes that a patient may visit 

several service points before leaving the hospital. In addition, 

there may be several candidate routes for them. The service 

time at each service point is generally uncertain. In addition, 

several walk-ins may arrive at the hospital. The problem 

situation can be considered as a stochastic job shop scheduling 

problem with dynamic arrival of jobs, and these problem are 

studied by, for example, Gholami and Zandieh (2009), Gu et 

al. (2009), and Tavakkoli-Moghaddam et al. (2005). Probably, 

the most realistic scheduling method in such complicated 

scheduling environment is the use of dispatching rules. When 

a machine finishes the process of a job, then one of the waiting 

jobs in front of the machine is selected by using an appropriate 

dispatching rule. Many rules have been proposed in the 

literature, but some researchers apply the genetic programming 

(GP) in generating dispatching rules; see, for example, 

Dimopoulos and Zalzala (2001), Nguyen et al. (2013), and Tay 

and Ho (2008). Within the limited knowledge of the authors, 

there are no dispatching rules that are expected to produce 

near-optimal schedule under two types of patients and multiple 

visiting routes. Therefore, GP is adopted in the present study 

with necessary modifications to reflect the condition of a 

hypothetical hospital described next. 

 

3. ASSUMPTIONS AND PERFORMANCE 
MEASURES 
 

3.1 Assumptions 
 

The morning session of a hospital which has 𝑚 

distinctive service points, 𝛩1, … , 𝛩𝑚 , is considered. Each 

service point has one service provider to accept at most one 

patient at a time. Let 𝛩1 be the consultation room operated by 

a physician. The other service points provide medical test or 

treatments. The hospital opens the reception desk at time 𝑡𝑠, 

and closes it at time 𝑡𝑒. All service providers start their service 

at time 𝑡𝑐, where 𝑡𝑐 ≥ 𝑡𝑠. The session is closed if all patients 

have received all the necessary services.  

In every morning session, the hospital accepts exactly 𝑛𝑠 

scheduled patients and also accepts 𝑛𝑤 walk-ins on average. 

The scheduled time of a patient is the time for the first 



 

 

consultation, assuming that all scheduled patients go to the 

consultation room first. To accept 𝑛𝑠 scheduled patients, the 

hospital prepares 𝑛𝑠  appointment times in advance and use 

these times in every session. The arrival time of scheduled 

patients is not deterministic but expected to arrive at around 

his or her scheduled time. No-shows and cancellations of 

scheduled patients can never happen. Walk-ins arrive at the 

hospital within the interval [𝑡𝑠, 𝑡𝑒]  randomly, and go to the 

consultation room first. 

Although some patients leave the hospital after the first 

consultation, other patients must visit other service points, and 

they visit the consultation room again before leaving the 

hospital. The route of service points of a patient is decided at 

the end of the first consultation. However, the number of 

candidate routes is known, and the frequency of the selection 

of each candidate route is available from the historical record. 

The distribution of service times of scheduled patients and 

walk-ins in each service point is also available. 

The results of the test conducted in service point 𝑗 

become available with a delay of 𝜏𝑗 after the completion of 

the service, assuming that such a delay is negligible in several 

service points. One example of non-trivial delay may exist in 

testing blood samples. Even if 𝜏𝑗 > 0, the status of the patient 

and the service provider becomes free at the end of the service, 

and thus the patient goes to the next service point, and the 

service provider starts the service for the next patient. 

Nevertheless, the second consultation requests all of the results 

of tests. Therefore, each patient requesting his or her second 

consultation will be treated as a waiting patient, only when all 

test results become available. 

All service points except the consultation room, do not 

assign any appointment time to patients. Therefore, from the 

viewpoint of fairness, each service point adopts the FCFS 

discipline. On the other hand, there is a complicated situation 

in front of the consultation room. Three types of patients may 

be waiting when congested, that is, scheduled patients, walk-

ins, and patients requesting the second consultation. To 

alleviate the stress of waiting under such a complicated 

situation, the hospital displays the consultation sequence for 

waiting patients up to a pre-fixed number of patients. The 

physician always calls the patient at the head of consultation 

sequence displayed. The sequence is displayed at the earliest 

beginning time of the first consultation, that is, 𝑡𝑐 , and the 

sequence will be updated when a new patient arrives or the 

physician calls the patient at the head of the sequence. Once it 

is displayed, the sequence is treated as frozen, and no one can 

cut into the sequence. The sequence contains patients waiting 

in front of the consultation room. In other words, no planned 

or expected patients to be arrived soon are included in the 

sequence. If a patient can find his or her position in the 

sequence, the starting time of his or her service can be 

estimated if all patients follow the displayed sequence. To 

make the system responsive to the waiting condition, however, 

the maximum length of the sequence is specified. 

 

3.2 Performance Measures 
 

In the present study, two types of patients are considered 

and each scheduled patient has an appointment time for his or 

her first consultation. In addition to the arrival of walk-ins, 

both scheduled patients and walk-ins may visit the consultation 

room again to receive his or her second consultation. Under 

such a complicated condition, constructing the rational 

objective function is not a simple task. One reasonable 

objective is to reduce the waiting time until the first 

consultation, as many patients may feel somewhat comfortable 

by consulting his or her physician. Needless to say, it is also 

important to reduce the total waiting time in the hospital, and 

to pay attention to the difference of patient types, that is, 

scheduled patients or walk-ins in the first consultation. Based 

on this discussion, the present study adopts the following 

objective function 𝑓 to be minimized. 

 

𝑓 = 𝛼�̅�1,𝑠 + 𝛽�̅�1,𝑤 + 𝛾�̅�2, (1) 

 

where the sum of three non-negative weight parameters 𝛼, 𝛽, 

and 𝛾 becomes one. The three terms on the right hand side 

represent the average waiting time for the first consultation of 

a scheduled patient, the average waiting time for the first 

consultation of a walk-in, and the average waiting time of a 

patient after the first consultation, respectively. The last term 

does not pay attention to the type of patients, and excludes the 

patients who have received his or her first consultation and 

then left the hospital immediately. 

The waiting time of a scheduled patient 𝑖 for his or her 

first consultation, 𝑊1,𝑠,𝑖, is given by Equation (2), where 𝑠𝑖 

represents the start time of the first consultation, 𝑎𝑖 represents 

the scheduled time of 𝑖, and 𝑟𝑖 represents the arrival time of 

𝑖 . The operator [ ]+  indicates that negative values are 

treated as zero. Equation (2) means that if a scheduled patient 

can consult the physician earlier than the scheduled time, the 

waiting time of him or her is treated as zero. 

 

𝑊1,𝑠,𝑖 = [𝑠𝑖 − max{𝑎𝑖 , 𝑟𝑖}]+. (2) 

 

The waiting time of walk-in 𝑗  for his or her first 

consultation, 𝑊1,𝑤,𝑗, is defined by Equation (3). If a walk-in 𝑗 

arrives at the hospital earlier than 𝑡𝑐, the time duration until 

𝑡𝑐 is excluded in the waiting time assuming that all patients 

are fully aware that the waiting is unavoidable until 𝑡𝑐. 

 

𝑊1,𝑤,𝑗 = 𝑠𝑗 − max{𝑟𝑗 , 𝑡𝑐}. (3) 

 

The waiting time after the first consultation is simply 

given by the difference between the arrival time at a service 

point, and the start time of the service at that point. By adding 



 

 

all waiting times until the start of the second consultation, the 

total waiting time of a patient is obtained. The objective 

function (1) uses three average values by dividing the total 

waiting times by the total number of corresponding patients. 

An additional explanation may be necessary in defining 

the waiting time after the first consultation, if 𝜏𝑗 > 0  in 

service point 𝑗 . As it is assumed that all results are 

prerequisites in the second consultation, it is impossible to 

realize zero waiting time even if a patient goes to the 

consultation room immediately after visiting 𝑗. Nevertheless, 

in calculating the waiting time, the existence of inevitable 

delay is ignored to simplify the calculation of waiting times. 

Inclusion of the inevitable delay in waiting time will motivate 

the adoption of new equipment and/or new technologies to 

reduce the waiting time of the patients. 

 

4. SCHEDULING METHODS 
 

4.1 Genetic Programming 
 

As explained in the previous section, it is assumed that 

the consultation room displays the consultation sequence, 

while other service points adopt FCFS discipline. Therefore, 

two decision terms exist; the maximum length of the 

consultation sequence displayed, and the generation 

mechanism of the sequence. In concrete terms, the latter 

indicates the method of selecting one waiting patient to be 

added to the tail of displayed sequence. 

Because of the stochastic arrival of patients, and the 

existence of three types of patients in terms of the objective 

function, it may be impossible to generate rules or procedures 

that select the most suitable patient to be added at the end of 

the displayed sequence in all possible situations. Note that the 

visiting route of each patient is decided at the end of the first 

consultation. 

To tackle this difficulty, the present study adopts a genetic 

programming (GP) approach that generates rules dynamically 

reflecting the performance of the current set of rules. In the 

present study, each rule is represented by a binary tree as 

shown in Figure 1. The tree represents the following equation: 

(2 − 1) + (3 ×  4). There are two types of nodes in a tree: 

Nodes with two direct child nodes, and nodes without direct 

child nodes. The former nodes are called operator nodes, while 

the latter nodes are terminal nodes. By giving related values 

for each patient, such as the arrival time, waiting time, or the 

expected service time, via these terminals, the rule gives a 

combined value to be used for selecting the most preferable 

patient among waiting patients. The present study assumes that 

a smaller value is preferable in the selection. 

 

 

Figure 1: A binary tree representing (2 − 1) + (3 ×  4) 

 

A simplified procedure of GP can be written as follows: 

Step 1 (Creation of the first generation): Create 𝑁 binary trees 

by selecting operators and terminals randomly from the 

sets of candidates prepared in advance. 

Step 2 (Evaluation of each tree): Obtain the objective function 

value of each tree, and then calculate the fitness of each 

rule. 

Step 3-1 (Creation of the next generation: Duplicate best rules): 

In non-increasing order of fitness, select a pre-fixed 

number of trees and copy these rules to the next 

generation. 

Step 3-2 (Creation of the next generation: Genetic operations): 

The roulette wheel selection is adopted. This means that 

a tree giving a higher fitness value has a higher 

probability in the selection. Select one or two trees, and 

apply one of the following genetic operations; 

reproduction, crossover, and mutation. Figure 2 shows an 

example of crossover and mutation operations. 

Step 3-3 (Creation of 𝑁 trees for the next generation): Apply 

Step 3-2 until the number of distinct trees generated 

reaches 𝑁. Use these trees as the next generation. 

Step 4 (Termination): Stop the procedure if the number of 

iterations of Steps 2 and 3 reaches a pre-specified 

maximum value, 𝐺. 
 

 

Figure 2: Example of crossover and mutation operations 

 

 



 

 

4.2 Operators and Terminals 
 

Table 1 shows the selected 13 operators based on previous 

studies and preliminary experiments. The first argument of the 

operator corresponds to the left child node in the tree, and the 

second one corresponds to the right child node. Some functions 

can be realized by using these operators. For example, |𝑥| =
max{−𝑥, 𝑥} , and the negation of a binary variable 𝑦  is 

realized by |𝑦 − 1|. 
 From the investigation of available information on 

patients waiting in front of the consultation room, eight 

terminals were selected as shown in Table 2. When these 

terminals are included in a tree, each terminal returns the 

corresponding value of the candidate patient at the moment of 

calling. Some terminals may need additional explanations. The 

terminal ST returns 0 for the first candidate patient in a session, 

and if the sequence is empty, return the requested value based 

on the last consultation. The candidate position in the 

consultation sequence, P, is equal to 1 if the sequence is empty. 

In addition to eight terminals shown in Table 2, four constant 

values, that is, 0, 1, 𝛼, and 𝛽, were also included as terminals. 

For the patients requesting the second round of 

consultation, there is no need to pay attention to the type of 

patients, that is, scheduled patients or walk-ins. Therefore, it is 

possible to prepare three queues as shown in Figure 3. Let 𝑥, 

𝑦, and 𝑧 be the queue for scheduled patients, walk-ins, and 

patients requesting the second round of consultation, 

respectively. The number of patients in queue 𝑥, 𝑦, and 𝑧, is 

represented by  𝑛𝑥 , 𝑛𝑦 , and 𝑛𝑧 , respectively. In queues 𝑦 

and 𝑧, patients are ordered based on their arrival time at the 

queue. On the other hand, queue 𝑥  is managed to order 

patients in non-decreasing scheduled times. Within the same 

scheduled time, arrival time is used to break a tie. Patients 

requesting the second round of consultation are included in 

queue 𝑧 after all of his or her test results become available. 

 

Table 1: The meaning of operators   

 

Symbol Meaning of operator (a, b) 

+ a + b 

– a – b 

* a * b 

/ a / b (if b = 0, then return a) 

max max{a, b} 

min min{a, b} 

eq if a = b, then return 1; else return 0 

le if a ≤ b, then return 1; else return 0 

ge if a ≥ b, then return 1; else return 0 

lt if a < b, then return 1; else return 0 

gt if a > b, then return 1; else return 0 

and if a ≠ 0 and b ≠ 0, then return 1; else return 0 

or if a ≠ 0 or b ≠ 0, then return 1; else return 0  

 

Table 2: The meaning of terminals   

 

Symbol Meaning 

TY Type of patient: Scheduled patient = 0; walk-in 

= 1; patient waiting for the second round 

consultation = 2. 

WB Total waiting time until arriving at the waiting 

room. 

WH Waiting time in front of the consultation room. 

ST If the same type of patient is at the tail of the 

displayed sequence, then 1; otherwise 0. 

AT The average consultation time. 

AR The arrival time at the waiting room for 

consultation. 

TW The number of the same type of patients 

waiting and not included in the consultation 

sequence.  

P The candidate position in the consultation 

sequence. 

 

 

 

Figure 3: Three queues of patients in the waiting room 

 

When selecting a patient to be inserted into the tail of the 

displayed sequence, there are at most three candidates, each 

from queues 𝑥, 𝑦, and 𝑧. If, for example, there are no patients 

in queues 𝑦 and 𝑧, then the patient at the head of queue 𝑥 is 

selected. If there are at least two candidates, the dispatching 

rule is applied to each patient, and the one with the smaller 

value is selected. To break a tie, a secondary priority is given 

as follows: 𝑥 is the highest, while 𝑧 is the lowest. 

The maximum display length, 𝐿, is expected to affect the 

objective function value. If 𝐿 = 1 , which is the minimum 

value under the condition of displaying the consultation 

sequence, then it is possible to select the most preferable 

patient from queues for the next by considering the latest 

conditions of patients waiting. For example, if the scheduled 

time of the patient at the head of queue 𝑥 is sufficiently ahead 

of the current time, it may be profitable to select a patient from 

queues 𝑦 or 𝑧. Such a careful selection becomes difficult for 



 

 

the increased value of 𝐿 . However, from the viewpoint of 

patients, a larger value of 𝐿 is generally preferable because 

each patient can estimate his or her start time of consultation. 

Therefore, we should pay attention to the tradeoff when 

deciding the maximum display length. The effect of the 

maximum display length, 𝐿, on the objective function value is 

investigated by simulation experiments. 

 

 
5. SIMULATION EXPERIMENTS 

 

5.1 Conditions 
 

There are one consultation room 𝛩1 and two medical test 

rooms,  𝛩2  and 𝛩3 . The consultation time of a patient is 

assumed to follow an exponential distribution, and the mean 

consultation time is shown in Table 3. Under the condition that 

the service time at a test room is assumed to follow a normal 

distribution, 𝑁(20, 32) and 𝑁(3, 0.52) are used for 𝛩2 and 

𝛩3 , respectively. The results of the test in 𝛩2  becomes 

available at the end of the service, while the results of test in 

𝛩3 become available 30 minutes later. At the end of the first 

consultation, the visiting route of each patient is determined 

based on the probability shown in Table 4. 

The reception desk opens at 8:00, closes at 11:00, and the 

earliest start time of all services is 9:00 am. The inter-arrival 

time of walk-ins is 20 minutes, and the following 20 scheduled 

times are prepared for accepting scheduled patients: 9:00, 9:00, 

9:00, 9:00, 9:00, 9:30, 9:30, 9:30, 9:30, 10:00, 10:00, 10:00, 

10:30, 10:30, 10:30, 11:00, 11:00, 11:00, 11:30, 11:30. A 

scheduled patient arrives at the hospital 𝑡 minutes earlier than 

his or her scheduled time, where 𝑡  follows a normal 

distribution 𝑁(10, 52). The current time is represented by the 

minutes from the midnight. For example, 9:00 am is 540 (min), 

and the noon is 720 (min). 

 

Table 3: The average consultation time (min) 

 

 First round Second round 

Scheduled patient 5.0 3.0 

Walk-in 6.0 3.0 

 

Table 4: Visiting routes and their selection probability 

 

Route Probability 
Scheduled Walk-in 

𝛩1 → 𝛩3 → 𝛩2 → 𝛩1 0.3 0.4 
𝛩1 → 𝛩3 → 𝛩1 0.3 0.3 
𝛩1 → 𝛩2 → 𝛩1 0.3 0.25 
𝛩1 0.1 0.05 

 
To minimize the effect of randomness involved in the 

target environment, the data of all patients to be arrived at the 

hospital over 4,000 sessions were generated in advance and 

used in every generation of GP. The data include the visiting 

route of each patient with the exact service time in each service 

point. Therefore, if the same dispatching rule is activated in 

two sessions, the same objective function will be obtained.  

In applying GP, the following parameter values were 

adopted; 𝑁 = 100 , 𝐺 = 20 , 𝜌 = 0.01 , 𝜎 = 0.59 , and 𝜏 =
0.4 , where 𝜌 , 𝜎 , and 𝜏  represent the probability of 

reproduction, crossover, and mutation, respectively. Four cases 

were generated by changing the weight of parameters (𝛼, 𝛽, 𝛾) 

in the objective function as follows: Case I (0.4, 0.4, 0.2), Case 

II (0.4, 0.2, 0.4), Case III (0.2, 0.2, 0.6), and Case IV (0.6, 0.1, 

0.3). 

 
5.2 Alternative Dispatching Rules 
 

In addition to FCFS rule, which always selects the patient 

arrived earliest among three queues, several alternative 

dispatching rules are prepared to highlight the performance of 

the obtained rules by GP.  

 

5.2.1 Estimated objective function value-based rule 
 

Based on the status shown in Figure 3, the effect of 

selecting the patient at the head of each queue on the objective 

function value is calculated roughly. Only patients in queues 

𝑥, 𝑦, and 𝑧 are considered and the additional average waiting 

time is estimated when the patient at the head of each queue is 

selected. Let the average consultation time of a patient in queue 

𝑖 be 𝑝𝑖 , and 𝑓𝑖 be the objective function value if the patient 

at the head of queue 𝑖 is selected. For all other patients the 

minimum waiting time is added under the average consultation 

time.  

For patients in queue 𝑥, the average waiting time of 𝑛𝑥 

patients can be expressed as 𝑓𝑥𝑥 = 𝑛𝑥(𝑛𝑥 − 1)𝑝𝑥/(2𝑛𝑥). All 

patients in queue 𝑦  must wait the completion of the first 

patient from 𝑥 , thus the minimum average waiting time of 

patients in 𝑦  can be written as 𝑓𝑥𝑦 = 𝑝𝑥 + 𝑛𝑦(𝑛𝑦 − 1)𝑝𝑦/
(2𝑛𝑦). Similar development produces the following equation: 

𝑓𝑥𝑧 = 𝑝𝑥 + 𝑛𝑧(𝑛𝑧 − 1)𝑝𝑧/(2𝑛𝑧). By using weights for these 

terms, the estimated objective function value can be written as 

𝑓𝑥 = 𝛼𝑓𝑥𝑥 + 𝛽𝑓𝑥𝑦 + 𝛾𝑓𝑥𝑧 . A similar calculation gives 𝑓𝑦, and 

𝑓𝑧. By deleting the same terms, it is possible to represent the 

objective function values as follows: 𝑓𝑥 = (𝛽 + 𝛾)𝑝𝑥 , 𝑓𝑦 =
(𝛼 + 𝛾)𝑝𝑦, 𝑓𝑧 = (𝛼 + 𝛽)𝑝𝑧 . The rule based on this estimated 

value is named EST in the experiments. 

 

5.2.2 Fixed Ordered Rules 
 

Figure 3 indicates that at most three patients should be 

compared when selecting the next patient. As each queue has 

the same type of patient, and each queue corresponds to a term 



 

 

of the objective function defined by Equation (1), it is a 

reasonable idea to give a fixed order of priority among these 

three queues. The factorial of 3 produces six orders such as 

𝑥 → 𝑦 → 𝑧 , and 𝑦 → 𝑥 → 𝑧 . The expression 𝑥 → 𝑦 → 𝑧 

means, for example, the patient in queue 𝑥 is always selected. 

If queue 𝑥 is empty then the patient in 𝑦 is selected. If both 

𝑥 and 𝑦 are empty, then the patient in queue 𝑧 is selected. 

 
5.3 Results and Discussion 
 

The combination of four cases and three levels of the 

display length brings 12 conditions. Because of the page 

limitation, only four rules generated by GP under 𝐿 = 1 are 

shown below: 

 

Case I: *(−(WB, AT), TY) 

Case II: max (AT, * (AT, + (ST, eq (WH, TY)))) 

Case III: −(𝛽, TY) 

Case IV: eq (TY, le ( + ( / ( 0, gt (AR, −(TY, TY))), −(ST, 

WH)), TY)) 

 

Even though the output of GP sometimes contained 

complicated terms such as the last rule shown above, a closer 

examination of these rules revealed that, in general, most of 

them can be transformed into fixed ordered rules based on the 

average consultation time and other related values. The above 

four rules can be rewritten as follows: 

 

Case I: 𝑦 → 𝑥 → 𝑧, if WB ≥ 3, otherwise 𝑦 → 𝑧 → 𝑥. 

Case II: 𝑧 → 𝑥 → 𝑦. 

Case III: 𝑧 → 𝑦 → 𝑥. 

Case IV: 𝑥 → 𝑧 → 𝑦, assuming that ST – WH ≤ TY. 

 

The objective function values by simulating 100,000 

sessions using 9 different rules are summarized in Table 5. At 

first, the effect of the maximum display length is examined. 

The objective function value given by GP indicates that 

increasing the display length deteriorated the objective 

function value, which is a reasonable behavior. On the other 

hand, FCFS was insensitive to the value of display length in all 

cases. Some rules indicated an opposite behavior. For example, 

in Case I, rule 𝑧 → 𝑥 → 𝑦  shows that the worst value was 

given under 𝐿 = 1 . Such an unexpected behavior was 

produced in inferior rules in each case.  

In terms of the minimization of the objective function, the 

proposed GP realized the minimum value in all cases. Table 5 

also indicates that one of the fixed order rules produced the 

minimum value in all cases. More specifically, 𝑦 → 𝑥 → 𝑧 in 

Case I, 𝑧 → 𝑥 → 𝑦  in Case II, 𝑧 → 𝑦 → 𝑥  in Case III, and 

𝑥 → 𝑧 → 𝑦  in Case IV. This correspondence is already 

indicated in the above examination.   

As the maximum number of candidates in the selection is 

three, and each queue is maintained separately, thus it is 

rational that one of the fixed ordered rules performed well. The 

rule EST, which includes the rough estimation of the objective 

function value indicated one of the best rules in Cases II and 

IV, but indicated inferior performance in other cases.  

 

Table 5: The objective function value produced by each rule 

under three levels of maximum display length 

Case Rule Maximum Display Length 

1 3 6 

Case I GP 41.2 42.3 43.6 

𝛼 = 0.4 FCFS 45.5 45.5 45.4 

𝛽 = 0.4 EST 58.0 54.6 50.7 

𝛾 = 0.2 𝑥 → 𝑦 → 𝑧 50.6 48.9 47.4 

 𝑥 → 𝑧 → 𝑦 58.6 55.2 51.1 

 𝑦 → 𝑥 → 𝑧 41.2 42.3 43.7 

 𝑦 → 𝑧 → 𝑥 41.5 42.5 43.7 

 𝑧 → 𝑥 → 𝑦 58.1 54.7 50.7 

 𝑧 → 𝑦 → 𝑥 42.3 43.3 44.2 

Case II GP 53.7 54.7 56.1 

𝛼 = 0.4 FCFS 58.6 58.6 58.6 

𝛽 = 0.2 EST 53.8 54.8 56.1 

𝛾 = 0.4 𝑥 → 𝑦 → 𝑧 63.0 61.8 60.4 

 𝑥 → 𝑧 → 𝑦 55.9 56.5 57.5 

 𝑦 → 𝑥 → 𝑧 62.7 61.9 60.7 

 𝑦 → 𝑧 → 𝑥 54.6 55.6 56.9 

 𝑧 → 𝑥 → 𝑦 53.8 54.7 56.1 

 𝑧 → 𝑦 → 𝑥 54.0 55.2 56.3 

Case III GP 58.2 61.4 65.7 

𝛼 = 0.2 FCFS 72.2 72.3 72.2 

𝛽 = 0.2 EST 66.3 67.4 69.0 

𝛾 = 0.6 𝑥 → 𝑦 → 𝑧 85.5 82.7 78.7 

 𝑥 → 𝑧 → 𝑦 71.4 72.1 72.7 

 𝑦 → 𝑥 → 𝑧 79.9 78.8 76.7 

 𝑦 → 𝑧 → 𝑥 59.1 62.4 66.5 

 𝑧 → 𝑥 → 𝑦 66.3 67.5 69.0 

 𝑧 → 𝑦 → 𝑥 58.1 61.5 65.6 

Case IV GP 39.0 41.6 45.4 

𝛼 = 0.6 FCFS 51.4 51.3 51.3 

𝛽 = 0.1 EST 39.1 41.6 45.4 

𝛾 = 0.3 𝑥 → 𝑦 → 𝑧 46.4 47.4 49.0 

 𝑥 → 𝑧 → 𝑦 39.2 41.6 45.5 

 𝑦 → 𝑥 → 𝑧 56.0 54.6 53.3 

 𝑦 → 𝑧 → 𝑥 56.6 55.4 53.7 

 𝑧 → 𝑥 → 𝑦 39.3 42.0 45.9 

 𝑧 → 𝑦 → 𝑥 55.9 54.7 53.0 

 

 

6. CONCLUSION 
 

The consultation sequencing problem of a hospital has 

been investigated in the present study. In the simulated 

environment, the hospital has three service points, and each 

patient goes to the consultation room first. After that, some of 



 

 

them visit other one or two service points and return to the 

consultation room again. Two types of patients are involved, 

that is, scheduled patients and walk-ins. To minimize the 

weighted sum of the average waiting times, the best 

dispatching rule is explored by GP. The simulation results 

indicate that the rules produced by GP often correspond to 

simple fixed ordered rules. The rules produced by GP support 

an intuitive idea of prioritizing the queues based on their 

weight. However, if two queues have the same weight, their 

priorities should be decided carefully. Otherwise, the 

inappropriate ordering of them may deteriorate the objective 

function value greatly.     

The present study assumes that the scheduled times are 

given in advance. Under the complex flow of patients and the 

stochastic arrival of walk-ins, the decision of scheduled times 

for minimizing the waiting times is an important research issue. 

Increasing the number of service points, and examining other 

service disciplines in each service point are also involved in 

the remaining research issues.  
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