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Abstract. We address in this paper the pickup and delivery multi-depot vehicle routing problem 

(PDMDVRP).  In this problem, a single commodity type is collected from a set of pickup 

customers to be delivered to a set of delivery customers by vehicles dispatched from multiple 

depots. The proposed problem has many applications in practice such as distribution of money 

between the branches of a bank, and moving a certain type of products from warehouses with extra 

supply to others that are short of the same product in a distribution network. The objective of 

PDMDVRP is to minimize the travel cost of capacitated vehicles in order to transport the 

commodity from pickup customers to delivery customers. We present a mathematical formulation 

for PDMDVRP and use CPLEX to solve small-scale instances. We propose a simulated      

annealing (SA) algorithm to solve the larger scale instances. Results show that the proposed        

algorithm is capable of producing high-quality PDMDVRP solutions. 
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1. INTRODUCTION 

This paper presents the pickup and delivery 

multi-depot vehicle routing problem (PDMDVRP).  

In this problem, multiple depots are considered with a 

set of customers that are divided into two groups 

according to the service required (delivery or pickup).  

Each delivery customer requires a given amount of 

the product and each pickup customer provides a 

given amount of the product. The product collected 

from a pickup customer can be supplied to a delivery 

customer, on the assumption that there is no 

deterioration in the product. 

 

 

For example, the customers can be branches of a 

bank in an area providing or requiring a known 

amount of money (the product), and the depots are 

the main branches of the bank. Clearly, this is a very 

simple variant of a more realistic problem where 

several commodities (e.g., bills and coins) could be 

considered, but it is still an interesting problem in its 

own right. It is assumed that the vehicle has a fixed 

upper-limit capacity and must start and end the route 

at the same depot. Also, we allow the initial load of 

the vehicle leaving from the depot to be any quantity. 
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2. LITERATURE REVIEW 

Vehicle routing problem (VRP) is a central issue 

in the area of transportation planning research. VRP 

was first introduced by Dantzig and Ramser [1]  and 

has been widely studied by numerous researchers [2, 

3]. It can be described as the process of determining 

optimal routes from a depot to a number of 

geographically scattered customers, subject to side 

constraints [4]. A classical version of VRP is 

capacitated VRP (CVRP), where a vehicle must 

satisfy certain capacity restrictions. Subsequently, 

when a distance or total time restriction is also 

imposed on CVRP, the problem becomes distance-

constrained CVRP. 

The vehicle routing problem with backhauling 

(VRPB) considers a vehicle servicing all delivery 

(Linehaul) customers with cargo loaded at the depot, 

followed by Pickup (Backhaul) customer services. 

Practical applications of this VRP variation are found 

in grocery industry presented in [5] and [6]. 

The vehicle routing problem with simultaneous 

pickup and delivery (VRPSPD) was introduced in 

1989 by [7]. It considers both Pickup and delivery 

service at each customer, while each collected cargo 

must be returned to the origin depot. This problem is 

present in milk bottles transporting while empty ones 

must be returned to the origin depot. A tabu search 

algorithm, with and without maximum distance 

constraints, was recently developed in [8] to solve 

VRP-SPD. 

The problem study about the single commodity 

pickup and delivery starts at the real-world 

application of the one commodity pickup and 

delivery traveling salesman problem (1-PDTSP). It 

was first introduced in Hernández-Pérez and Salazar-

González [9] together with an exact approach to solve 

instances with up to 50 customers. [10] and [11] 

study the special case of the 1-PDTSP where the 

delivery and pickup quantities are all equal to one 

unit, which is known in the literature as the 

capacitated traveling sales-man problem.  

Later, Martinovic, Aleksi [12] introduced the one 

commodity pickup and delivery vehicle routing 

problem (1-PDVRP) that deals with multiple vehicles 

and is the same as the single-commodity traveling 

salesman problem (1-PDTSP) when the number of 

vehicles is equal to 1. The main difference between 

VRPB, VRPSPD, and 1-PDVRP is that in 1-PDVRP 

cargo picked up from pickup customers can be 

delivered to delivery customers. In 1-PDVRP, the 

predefined sequence of servicing customers is not a 

constraint.  

In this paper, we study the one commodity 

pickup and delivery multi-depot vehicle routing 

problem (PDMDVRP) which is one of the VRP 

extensions. In general, the VRP problem and its 

variations are NP-hard. Therefore, we propose a 

simulated annealing (SA) algorithm to solve the 

present problem. 

 

3. PROBLEM DESCRIPTION 

This article presents a pickup-and-delivery multi-

depot vehicle routing problem (PDMDVRP). A set of 

depots and customers are introduced. The set of 

customers are divided into two groups (pickup and 

delivery customers). One type of product is 

considered. The product collected from a pickup 

customer can be supplied to a delivery customer, on 

the assumption that there is no deterioration in the 

product. It is assumed that the vehicle has a fixed 

upper-limit capacity and must start and end the route 

at the depot. Also, we allow the initial load of the 

vehicle leaving from the depot to be any quantity. 
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0: The load of a vehicle after leaving node  to ijL i j  
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The objective (1) aims to minimize the vehicle 

traveling cost. Constraint (2) ensures that each 

customer is served exactly once. In Constraint (3), the 

number of entering arcs is equal to the number of 

leaving arcs for each node. Constraint (4) ensures that 

a vehicle should leave and enter the same depot. 

Constraint (5) ensures that one vehicle only travels in 

one route. Constraint (6) and (7) are the constraints 

for demand and supply, respectively. Constraints (8) 

and (9) imply that the total demand and supply of 

customers assigned respectively to a specific depot 

are satisfied by the vehicles dispatched from the 

depot. Constraint (10) defines load of a vehicle. 

Constraint (11) ensures that the load of a vehicle does 

not exceed the vehicle’s capacity. Constraints (12) 

and (13) guarantee that the load and remaining space 

are enough to handle the upcoming demand. 

Constraint (14) and (15) state the bounds of the 

remaining demand and supply, respectively. 

Constraint (16) guarantees that each customer is 

assigned to one depot. Constraint (17) defines the 

number of used vehicles for each depot. Constraint 

(18) ensures that the total traveling cost for each 

route cannot exceed the maximum duration. 
Constraints (19)-(23) prohibit infeasible routes. 

 

4. SIMULATED ANNEALING (SA) 



 

Metropolis, Rosenbluth [13] introduced a 

simple algorithm that can be used to provide an 

efficient simulation of a collection of atoms in 

equilibrium at a given temperature by accepting 

worse solutions in iterations with a small probability 

called the Metropolis criterion. Later, it was known 

as a simulated annealing (SA). SA is a local search-

based heuristic which is capable of avoiding from 

being trapped in a local optimum [14]. It has been 

successfully applied to solve many vehicle routing 

related problems. For example, Lin, Yu [15] solved 

the truck and trailer routing problem with SA. Lin 

and Yu [16] proposed the SA to solve TOPTW. The 

results show that SA is competitive with other 

solution approaches which have been applied to solve 

TOPTW. 

In this paper, we applied the SA algorithm for 

solving PDMDVRP. The proposed SA uses a 

constructive type of heuristic to generate the initial 

current solution, and a new solution is then derived 

from the predefined neighbourhood of the current 

solution. The neighbourhood structure improves the 

solution, utilizing three types of common moves: 

swap, reversion, and insertion. Finally, a local search 

is performed to refine the solution obtained from the 

SA algorithm. Figure 1 shows the flowchart of the 

proposed SA algorithm for PDMDVRP. 

4.1 Solution Representation 

A solution representation consists of a set of N0 

depots denoted by {1, 2, …, N0 }, a set of Nc 

customers denoted by {N0+1, N0+2, …, N0+NC, }, and 

Ndummy dummy zeros. The first number in a solution 

representation must be a depot. 

4.2 Neighborhood Structures 

This research uses a standard SA procedure 

which randomly selects neighborhood structures: 

swap, insertion, and inversion, to solve the 

PDMDVRP. Let N(X) denote the set of neighboring 

solutions of the current solution X. At each iteration, 

a new feasible solution Y is selected from N(X) by 

one of the three types of moves briefly described 

below. 

The swap move randomly selects the ith and the 

jth locations of X and then exchanges their positions. 

The insertion move is carried out by randomly 

selecting the ith location of X and then inserting it into 

the position immediately before another randomly 

selected jth location of X. The inversion move is 

performed by randomly selecting two locations, and 

then reversing the sequence between the two 

locations (including the two selected locations). The 

probabilities of performing the three moves: swap, 

insertion, and inversion are set to be 1/3, 2/3, and 3/3, 

respectively. Note that after a move, the tours need to 

be recalculated as illustrated in the previous section. 

Thus, a location that was not selected in the original 

solution may be selected after a move, and vice versa. 

The new solution is always feasible due to our 

solution representation scheme. 

 

5. COMPUTATIONAL RESULTS 

For testing our solution approach for PDMDVRP, 

the proposed SA has been implemented in C++ and 

executed on a PC with a 3.4 GHz processor and 16 

GB of RAM, under the Windows 7 operating system. 

5.1   Parameter Setting 

The proposed SA heuristic requires five 

parameters Iiter, T0, MaxT, Nnon-improving and  . Iiter 

denotes the number of iterations the search proceeds 

at a particular temperature. T0 represents the initial 

temperature. MaxT is the maximal allowable 

computational time used. Nnon-improving is the maximum 

allowable number of temperature reductions during 

which the best objective function value has not 

improved. Finally,   is a coefficient used to control 

the speed of the cooling schedule.  

5.2   PDMDVRP Instances 

 

PDMDVRP instances are adopted from 

Cordeau’s dataset of the multi-depot vehicle routing 

problem. In PDMDVRP instances, the larger 

problems have 180 delivery customers and 156 

pickup customers where travel times equal their 

corresponding distances.  From these instances, 

smaller problem instances were derived with only the 

first 25 delivery locations and 20 pickup locations 

considered. The number of potential depot is from 4 

to 10 locations. 
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Figure 1: the flowchart of the proposed SA algorithm 

for PDMDVRP 

 

 

5.3   Computational Results 

This paper uses CPLEX solver to solve the model. 

If the solver cannot find the optimal solution within 3 

hours, it was terminated Table 1 shows the results for 

PDMDVRP instances. The result shows that CPLEX 

can only obtain a feasible solution for two instances.  

The SA produced the better solutions than those 

obtained by CPLEX. The computational time may 

depend on various factors, such as the CPU of the 

machines, the operation system, the compiler, the 

computer program, and the precision used during the 

execution of the run. In general, our SA heuristic 

takes much lesser time than CPLEX for all problem 

instances.  

 

Table 1 Computational results for PDMDVRP 
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AMPL SA 

Obj Time Obj Time 

p01 25 20 4 471.05 18000 379.53 50.117 

p02 25 20 4 435.42 18000 351.74 51.184 

p03 38 33 5 N/A 18000 499.69 83.782 

p04 50 41 2 N/A 18000 599.18 109.438 

p05 50 41 2 N/A 18000 568.03 103.974 

p06 50 41 3 N/A 18000 598.4 111.026 

p07 50 41 4 N/A 18000 586.44 112.461 

p08 125 102 2 N/A 18000 2566.6 405.366 

p09 125 102 3 N/A 18000 2476.2 416.146 

p10 125 102 4 N/A 18000 2470.9 418.195 

p11 125 102 5 N/A 18000 2546.1 414.771 

p12 40 34 2 N/A 18000 1069.8 79.577 

p13 40 34 2 N/A 18000 1161.5 77.449 

p14 40 34 2 N/A 18000 1276.6 80.024 

p15 80 69 4 N/A 18000 2127.5 211.016 

p16 80 69 4 N/A 18000 2497.2 213.649 

p17 80 69 4 N/A 18000 2530.1 220.607 

p18 120 119 6 N/A 18000 3456 455.384 

p19 120 119 6 N/A 18000 3980.2 443.301 

p20 120 119 6 N/A 18000 4077.7 446.503 

p21 180 156 9 N/A 18000 5260.8 822.436 

p22 180 156 9 N/A 18000 5387.3 809.222 

p23 180 156 9 N/A 18000 5568.2 872.974 

Average 453.237 18000 2262.428 304.7218 

 



 

6. CONCLUSION AND FUTURE RESEARCH 

This study proposes the pickup and delivery 

multi-depot vehicle routing problem (PDMDVRP), 

which aims to minimize the total travel cost of 

vehicles. In this problem, a single commodity type is 

collected from a set of pickup customers to be 

delivered to a set of delivery customers by vehicles 

dispatched from multiple depots. The simulated 

annealing (SA) is proposed to solve the problem. The 

proposed SA is tested on 23 benchmark instances. 

Computational results show that the proposed SA 

effectively and efficiently solves PDMDVRP.  

Future studies may consider extensions of this 

problem. We believe that this variant will attract 

further attention to the pickup and delivery problem. 

Moreover, for more comparative analysis, it will be 

very beneficial if other heuristic and metaheuristic 

approaches are proposed to solve this problem. 
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