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Abstract. This paper determines an optimal trading strategy for a decision maker that needs to purchase a 

commodity from the upstream in a fixed quantity and price at each period, and resell to the downstream at a high 

market price. This trading problem is typically found in the non-profit organizations to support the poors in the 

industry upstream, and thus the objective is to maximize the sustainability, not profits or growth. We model this 

problem as a stochastic dynamic programming problem to maximize the survival probability; optimal strategy is 

determined and managerial insights are also discussed.  
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1. INTRODUCTION 
 

Motivated by a real case, we investigate a 3-tier supply 

chain, in which a wholesale need to purchase storable 

commodities from the upstream suppliers at a fixed quantity 

and a fixed price. The wholesale stores the commodities and 

resells to the downstream market when the spot market price 

is favorable. This business model can be found in some non-

profit organizations to support the poors in the industry 

upstream. Thus the objective of the organization is to 

maximize the sustainability, not profits or growth.  

The objective of the paper is to determine the optimal 

trading (selling) decision, i.e., at each period, what is the 

quantity level to sell when the spot price is observed. We model 

this problem as a stochastic dynamic programming problem to 

maximize the survival probability.  

Our research question is related to the inventory problems. 

Inventory problem is an important and classic research area 

that determines when to order and/or by how many to fulfil the 

demand. Considering different cost factors, e.g. setup cost, 

holding cost, shortage cost, etc., the decision intends to 

maximize the expected profits for one or multiple periods (see 

e.g., Adeyemi and Salami, 2012; Federgruen and Heching, 

1999; Zipkin, 2000). Some works consider the external 

constraints in practices, for example, the lead time and capacity 

of the suppliers (e.g. Federgruen and Zipkin(a), 1986; 

Federgruen and Zipkin(b), 1986; Ciarallo et al., 1994; Wang 

and Gerchak, 1996). In the last decade, the internal capability 

constraints, such as finance condition, have drawn attention 

(e.g. Xu and Birge, 2005; Chao et al., 2008). In addition to the 

profitability, some works, such as Archibald et al. (2002) and 

Thomas and Archibald (2003), consider the sustainability 

especially for the startup companies.  

Back to 1948, Cahn studied how to optimally trade 

(buy/produce and sell/hold) for profitability when observe the 

market prices. He considered deterministic price variability 

and storage capacity. Dreyfus (1957) showed that although in 

a multi-period environment, only one of the three actions is 

optimal at each period: doing nothing, selling all inventory on 

hand, and buying as many as possible.  



 

Trading problem can apply to storable commodity, such 

as oil (Devalkar et al., 2011), fuel (Martínez-de-Albéniz and 

Vendrell, 2008), natural gas (Secomandi, 2010) and electricity 

(Cruise et al., 2014; Cruise and Zachary, 2015). And 

methodology-wise, they are typically formulated as linear 

programs (e.g., Charnes and Cooper,1955) or dynamic 

programs (e.g. Bellman, 1956; Secomandi, 2010). Stochastic 

price, an important characteristic in reality, is studied since 

Charnes et al. (1966), and there is a stream of research also 

consider the transactions capacity, e.g. Rempala (1994), 

Martínez-de-Albéniz and Vendrell (2008), Secomandi (2010) 

and Cruise et al. (2014). However, to our best knowledge, the 

literature has only focused on the profit maximization, but not 

the sustainability that is the most important feature in this work.  

The paper is unfolded as follows. Section 2 presents the 

optimization model and solution approach. Section 3 presents 

a simulated case study to show the correctness and 

effectiveness of the proposed model, and Section 4 concludes.  

 

2. MODEL and SOLUTION APPROACH 
 

In this section, we formally develop a dynamic 

programming model to reflect the situation we studied and to 

provide a decision analysis aid for the wholesaler under study. 

Hereafter we call the wholesaler as the decision maker to 

generalize the model.  

Consider the decision maker needs to purchase a storable 

commodity from the upstream in a fixed quantity (𝑑) and fixed 

price (𝛽) at each period, and resell to the downstream later at a 

suitable market price. There is a fixed operating and 

administration cost 𝐻  for each period, including rent, 

personnel, depreciation, etc. 

We define period 𝑡 as that there are 𝑡 periods left. The 

interpretation of 𝑡 is different from the conventional multiple 

period decision model to reflect our special concern on the 

objective of the business. A stochastic process {𝑠̃𝑡 , 𝑡 =
1,2,3, … } represents the spot price at different time periods. 

We denote the corresponding realized value as 𝑠𝑡 , and the 

density function as 𝑓𝑠̃𝑡
. This can be considered as a backward 

stochastic process due to the definition of the time index.  

Figure. 1 shows the decision sequence at each period. In 

the beginning of the period, the decision maker observes the 

spot price, she determines the selling quantity, and sells the 

stocks to the downstream. She then purchases the commodities 

from the upstream and stores in the storage. We assume that all 

trading transactions are paid in cash.  

Denote the 𝑎𝑡  be the level of trading activity, i.e., the 

quantity selling to the downstream, at period 𝑡. Let 𝑚𝑡 and 

𝑖𝑡 be the cash and inventory level at the beginning of period t, 

respectively. 𝑚𝑡 and 𝑖𝑡 also represent the cash and inventory 

level at the end of period 𝑡 + 1  due to law of material 

convention and the definition of the time index. We have the 

following relationships:  

 

𝑚𝑡−1 = 𝑚𝑡 + 𝑎𝑡𝑠𝑡 − 𝑑𝛽 − 𝐻; (1) 

  

𝑖𝑡−1 = 𝑖𝑡 − 𝑎𝑡 + 𝑑. (2) 

  

A trading decision 𝑎𝑡  is determined by not only the 

observed spot price 𝑠𝑡, but also constrained by many factors. 

𝑎𝑡 is bounded by the trading transition capacity 𝐴̅, i.e., cannot 

exceed the maximum level of selling due to manpower and 

space, and the inventory 𝑖𝑡, i.e., must having something to sell. 

This requirement is stated as follows: 

 

𝑎𝑡 ≤ 𝑚𝑖𝑛(𝐴̅, 𝑖𝑡). (3) 

  

𝑎𝑡 is also constrained by the storage capacity 𝐶, i.e., selling 

is needed to clean out the space for incoming stock 𝑑 due to 

the required purchasing at each period even when the spot price 

is not favorable. It is represented as follows:  

 

𝑎𝑡 ≥ max{0, 𝑖𝑡 + 𝑑 − 𝐶}, (4) 

 

where 𝑖𝑡 + 𝑑 − 𝐶 is the inventory space needs to sold for the 

new purchasing 𝑑 . Further, (1) indicates 𝑎𝑡  should be 

determined to ensure 𝑚𝑡−1 ≥ 0  due to the underlying 

objective of the firm. In summary, 𝑎𝑡 depends on the status of 

𝑖𝑡  and 𝑚𝑡 . Further, determining 𝑎𝑡  should consider the 

current cash level and the future cash flows as the function (eq. 

(1)) of future spot prices, which are uncertain. 

 

Figure 1: Decision sequence for a period 



 

Survival is defined by the cash level. When the cash level 

is below 0, the firm files the bankruptcy, otherwise it survives. 

Denote the maximum probability to survive next 𝑡  periods 

given the observed spot price and current inventory and cash 

levels as 𝑄(𝑡, 𝑚𝑡 , 𝑖𝑡 , 𝑠𝑡). 𝑄(𝑡, 𝑚𝑡 , 𝑖𝑡 , 𝑠𝑡) can be expressed in 

the following recursive form: 

 

𝑄(𝑡, 𝑚𝑡 , 𝑖𝑡 , 𝑠𝑡) 

= max
𝑎𝑡∈𝕂

∑ 𝑓𝑠̃𝑡−1
(𝑠𝑡−1)𝑄(𝑡 − 1, 𝑚𝑡 + 𝑎𝑡𝑠𝑡 − 𝑑𝛽

𝑠𝑡−1

− 𝐻, 𝑖𝑡 − 𝑎𝑡 + 𝑑, 𝑠𝑡−1)   𝑡 > 1 

 

(5) 

𝑄(1, 𝑚1, 𝑖1, 𝑠1)

= {
0 𝑚1 + 𝑎1𝑠1 − 𝑑𝛽 − 𝐻 < 0
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑜𝑟  𝑎1 ∈ 𝕂 

 

(6) 

𝑄(𝑡, 𝑚𝑡 , 𝑖𝑡 , 𝑝𝑡) = 0 𝑖𝑓  𝑚𝑡 < 0 𝑡 ≥ 1 (7) 

 
𝕂 is the feasible region for 𝑎𝑡 𝑡 ≥ 1, which is defined by (3) 

and (4). Eq. (5) specifies the relation between 𝑡 periods left to 

𝑡 − 1 periods left. In the last period to operate, there are only 

two possible outcomes: survival or bankruptcy, i.e. survival 

probability can be either one or zero. Eq. (6) expresses this 

consideration. Eq. (7) reflects the fact that once the firm faces 

the bankruptcy, it cannot survive afterward.    

We use backward induction to solve the problem. Figure. 

2 shows the pseudocode of the backward induction. The first 

part associates with Eq. (6) reflecting the situation with one 

period left. The second part implements the recursive structure 

of Eq. (5). In both cases, we simply enumerates all possible 

states of the inventory and cash levels to search for an optimal 

solution, and Eq. (7) should be followed. 

 

3. NUMERICAL RESULTS 
 

This section illustrates the effectiveness of the proposed 

model and the optimal solutions provided. We implement the 

proposed dynamic program model to obtain the optimal 

survival probability conditioning on the status of observed spot 

price, inventory and cash levels as well as the target time frame 

to operate. Of course, the corresponding optimal trading 

decisions are also provided  

We set the operational storage and transition capacities as 

𝐶 = 250  tons and 𝐴̅ = 190  tons/week. Each week, it is 

required to purchase 𝑑 = 20  tons at unit price 𝛽 = 3 

NTD/kg, and the weekly operation cost is 𝐻 = 50,000 NTD. 

The parameters are based on the data sources for the waste 

paper recycle industry in Taiwan so that it can properly reflect 

the reality. We collect the weekly waste paper wholesale price 

information from July 2005 to March 2016. We round the 

prices to integer, which ranges 2 to 7 NTD/kg, and summarize 

the frequency for the corresponding values as the empirical 

probability function of the spot market price. Table 1 

summarizes the probabilities. We assume the spot prices 

distribute independently and identically following the 

probabilities. 

We assume the selling quantities are in the unit of 10 tones, 

i.e., we can only sell 10, 20, 30 tones etc. This assumption 

narrows down the solution space to be searched, which is not 

necessary, but is also reasonable in real practice since it is the 

capacity of a medium-size truck. We present our results based 

on the current inventory is 120 tones, ~50% of the storage 

capacity, and the cash level is 500,000 NTD, which is roughly 

 

The Backward Induction Algorithm 

[INPUT:] ℙ, 𝑇,  𝑚𝑇,  𝑖𝑇,  𝑝𝑇 

[OUTPUT:] 𝑄(𝑇, 𝑚𝑇 , 𝑖𝑇 ,  𝑝𝑇) 

 one period left: 

  𝕊1 = listAllPossibleStates(1, 𝑚𝑇, 𝑖𝑇, 𝑝𝑇, ℙ) 

  For 𝑠 in 𝕊, Do: 

     ℚ1(𝑠) = findOptSurvivalProbsForPeriodOne(s, ℙ) 
  End for. 

 t periods left: 
  For t = 2,…,T, Do: 

  𝕊𝑡 = listAllPossibleStates(t, 𝑚𝑇, 𝑖𝑇, 𝑝𝑇, ℙ ) 
     For 𝑠 in 𝕊, Do: 

        ℚ𝑡(𝑠) = findOptSurvivalProbs(s, ℚ𝑡−1, ℙ) 
     End for. 

  End for. 
 

Figure 2: Pseudocode of the backward induction 



 

prepared for operating one month and commonly observed in 

practice.  

Table 2 shows the survival probability for operating 200 

weeks (~4 years) based on 120 tones inventory and 500,000 

cash on hand associated with 6 different price observed. 

Column 2 lists the maximum probabilities are obtained by the 

proposed model, and Column 3 is the probabilities based on 

simulation study.  

We first validate the correctness of our model, the optimal 

survival probability is correct, by simulation. We test the null 

hypothesis that the true survival probability based on the 

trading policy equals to the value listed in Column 2. In 

simulation, we generate 200 spot prices, representing the 

prices for the next 200 weeks, independently and identically 

based on the empirical probability function shown in Table 2. 

At each week, when the price, generated in the beginning, is 

observed, we follow the trading policy suggested by the 

proposed model. After 200 weeks, the information of whether 

or not to survive is collected. We repeat the experiment 1000 

times, and collect the proportion of survival as the simulated 

survival probability (Column 3). We conduct a statistical 

inference for the hypothesis using the simulated survival 

probability as the estimate, and the p-values are also listed in 

Table 2. The high p-values do not provide sufficient evidences 

to reject the null hypothesis, and we conclude that when 

following the policy proposed, the survival probability equals 

the optimal survival probability provided by the program. 

In the simulation with the same parameter setting, we 

further apply three trading rules to see if the policy proposed 

in this paper is superior. The first policy is a single-period cash 

flow balance rule: at any week, the cash inflow from selling 

commodity should equal all cost expenses including 

purchasing and operating. This policy does not consider the 

possible variability of the spot price.  

The first policy ignores the fact that it is reasonable to 

selling more when the price is very high. The second policy 

reflects this observation by setting the selling quantity linear to 

the spot price, i.e. the selling quantity is linear to the gap 

between the breakeven unit cost considering purchasing and 

operation costs and unit spot price observed. For example, 

suppose the breakeven unit cost is 4 NTD/kg and the maximum 

spot expected is 7 NTD/kg, we sell 1/3 of the inventory when 

5 NTD/kg is observed or 2/3 of the inventory when 6 NTD/kg 

is observed. 

The third policy is modified from the one proposed by 

Dreyfus (1957): sell all inventory when the market price is 

higher than the purchasing cost; otherwise buy as much as you 

can. We note that Dreyfus (1957) tries to maximize the 

expected profits, not the survival probability, for free 

purchasing i.e. a decision maker can decide to purchase any 

quantity (including nothing) from the upstream supply to 

benefit herself. To fit into our context, we define the threshold 

as the breakeven nit costs used in the second policy. And the 

decision maker sells all inventory when the market price is 

higher than the threshold; otherwise buy as much as she can.  

Table 3 shows the comparison of four different policies. 

The values are the proportion of the survival in 1,000 

simulation trials based on the corresponding trading rules. It is 

found that cash flow balance gives the worst performance (no 

survival among 1,000 trials), and our policy outperforms all 

other three with a significant gap. The comparison provides 

evidence to support the effectiveness of our optimal trading 

policy. 

 

Table 1: Empirical distribution of the spot price 

Price (NTD/kg) 2 3 4 5 6 7 

Probability .0445 .4152 .2055 .1724 .0963 .0661 

 

Table 2: Survival probabilities obtained by the policy 

spot price (NTD/kg) 
optimal survival 

probability 

simulated proportion of 

survival 
p-value* 

2 .930 .934 .62 

3 .930 .94 .22 

4 .930 .939 .27 

5 .941 .939 .79 

6 .973 .978 .33 

7 .989 .987 .54 

*𝐻0: real survival probability equals the optimal probability computed. 

 

 



 

4. CONCLUDING REMARKS 
 

Motivated by a real case, we develop an optimal trading 

policy for a special 3-tier supply chain scenario. In the scenario, 

a wholesale need to purchase storable commodities from the 

upstream suppliers at a fixed quantity and a fixed price. The 

wholesale stores the commodities and resells to the 

downstream market when the spot market price is favorable. 

Different from the literature maximizing the expected profits, 

we focus on the sustainability of the operations, i.e. 

maximizing the survival probability. We model the problem as 

a stochastic dynamic program. The simulated case studies 

show the model can provide a policy with superior decision 

quality.  
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