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Abstract. This paper evaluates the system reliability of a manufacturing system with two production lines. 

The manufacturing system is constructed as a multistate manufacturing network (MMN). The system 

reliability is defined as the probability of demand satisfaction, as well as all buffers are not running out of 

storage. In the MMN, buffers with limited capacities are considered to avoid the MMN from blockage and 

starvation. First, the amount of input materials, workload, and minimal capacity that each workstation has to 

provide to satisfy the demand, are studied in flow analysis. Second, a ‘buffer usage matrix (BUM)’ is 

proposed to calculate the buffer usage and buffer reliability. Third, system reliability with limited buffer 

capacities is derived. An example is utilized to illustrate the proposed method.  
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1. INTRODUCTION 
 

Multistate manufacturing network (MMN) is a genre 

of multistate network model. In the MMN model, each 

workstation consists of k identical or similar machines, 

meaning that (k + 1) performance states are exhibited. The 

highest level k corresponds to all machines are normally 

operating, while zero is the lowest level of operation. 

Earlier studies (Lin, 2007; Yeh, 2008, 2011; Azadeh et al., 

2015) have been devoted to constructing a manufacturing 

system as a conventional multistate network to evaluate its 

system reliability. Generally speaking, the system reliability 

is defined as the probability of demand satisfaction. This 

system reliability indicates the probability that the current 

capacity state of an MMN can successfully process a 

specific demand amount. However, the abovementioned 

studies are assumed to follow the so-called flow 

conservation law (Ford and Fulkerson, 1962), meaning that 

no flow increases or decreases during production. In the 

real-world, input flow processed by a workstation may not 

equal output flow due to the possibility of defect and scrap. 

Hence, the conventional multistate network is incapable to 

deal with practical characteristic of defects because the 

limitation of flow-conservation law. Recently, Lin and 

Chang (2012, 2013) develop a more practical MMN model 

with defect consideration. The primary characteristic of this 

MMN model is violation of flow conservation law. A 

graphical technique, integrating transformation and 

decomposition, is developed to deal with defect and scrap 

in a practical manufacturing system. This MMN model is 

further applied to the footwear manufacturing system (Lin 

et al., 2013). However, all of the above works assume the 

buffer capacity between workstations is unlimited. In other 

words, those studies have no capability to deal with the 

blockage and starvation of workstations. 

The unlimited buffer capacity assumption in the MMN 

model can simplify the flow analysis and reliability 

evaluation. However, because all workstations in an MMN 

operate at a distinct production rate, work-in-process (WIP) 

may have to wait before entering the downstream 

workstation; or downstream workstations may be idle when 

they have to wait for the next WIP (Xiaobo et al., 2001; 

Becker and Scholl, 2006). Therefore, a workstation may be 

blocking or starving while the production rates of 

workstations are different. In order to eliminate the 

situation of blockage or starvation, setting buffer between 

workstations allows sequential workstations to operate 

more independent of each other (Demir et al., 2014). In 



 

 

 

light of practical needs, to model buffers with limited 

capacity is a crucial issue when studying the system 

reliability of an MMN. 

 

2. MODEL CONSRUCTION 
 

In this paper, a flow-shop manufacturing system with 

two production lines, is constructed as an MMN for 

reliability evaluation. This sections utilizes an activity-on-

arc (AOA) diagram to represent an MMN. Each arc is 

regarded as a workstation consisting of identical machines; 

each vertex denotes an inspection station following the 

workstation. Different from the previous studies (Lin and 

Chang, 2012, 2013; Lin et al., 2013), this paper extends the 

MMN model to consider limited buffer capacity between 

workstations. The MMN is studied according to the 

following assumptions. 

1) All inspections (vertices) are perfectly reliable. The 

inspections do not damage any WIP/products. 

2) The capacity of each workstation (arrow) is a random 

variable which takes possible values according to a 

historical probability distribution. 

3) The capacity of each workstation is independent from 

the one for any other workstation. 

 

2.1 MMN with Buffer 
 

Let (V, A, B) represent an MMN, in which V is the set 

of vertices (inspections) and A = {aj,i|j = 1, 2; i = 1, 2, …, n} 

is the set of arcs (workstations). The notation aj,i denotes 

the ith workstation (operation/process) in the jth production 

line Lj. Because the capacity xj,i of each workstation aj,i is a 

random variable according to assumption (2), the MMN is 

stochastic (i.e. multistate). For each aj,i, xj,i takes multiple 

possible values 0 = xj,i(1) < xj,i(2) <… < 
,, ( )j ij i cx = kj,i. The set 

of buffers is denoted by B = {bj,i/i+1|j, i: a buffer is set 

between aj,i and aj,i+1}. Note that, it is not necessary to 

model buffers between every pairs of workstations; the 

buffer capacity is zero if there is no buffer set between 

workstations. For any pair of workstations in the same 

production line Lj, the buffer (circled part) is represented as 

Figure 1. 

 

 
Figure 1: A buffer between two workstations. 

 

The flow is affected by the defect rate of each 

workstation; the defect rates of workstations affect the 

output of a production line and lead to defective products. 

Hence, for a demand pair (d1, d2) assigned to production 

lines (L1, L2), the amount of raw materials should be 

determined backward in advanced. Let Ij be the amount of 

raw materials to produce Oj units of product in Lj; it is 

intended to determine the relationship between Ij and Oj 

such that Oj  dj. Given the defect rate qj,i of aj,i and thus 

the success rate pj,i = 1 – qj,i, where 0  pj,i  1 The 

maximum capacity of Lj, denoted by Kj, is calculated by 

 

 Kj = min(kj,1pj,1pj,2…pj,n, kj,2pj,2…pj,n, …, kj,npj,n) (1) 

 

The expected input amount of raw materials for Lj is 
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Because the amount of raw materials is obtained by 

Eq. (2), the workload entering each aj,i can be calculated in 

terms of the workstation defect rate. The workload of 

workstation aj,i, denoted by wj,i, is calculated by 
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1
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For all workstations, the workload vector W = (w1,1, 

w1,2, …, w1,n, w2,1, w2,2, …, w2,n). In most situations, the 

capacities provided by workstations may not exactly equal 

the workloads. To satisfy the workload of each workstation, 

the following transformation finds the minimal capacity 

that should be provided. 

 yj,i = , ( ) , ( ) , , ( 1)                    if 

doesn't exists       else

j i j i j i j ix x w x    



,(4) 

where θ = 1, 2, …, cj,i. Therefore, the minimal capacity 

vector Y = (y1,1, y1,2, …, y1,n, y2,1, y2,2, …, y2,n).  

 

2.2 Buffer Usage 
 

For each possible value of xj,i, the corresponding 

probability is denoted by Pr(xj,i = xj,i(θ)) for θ = 1, 2, …, cj,i. 

For the sake of compact representation, let πj,i(θ) denote 

Pr(xj,i = xj,i(θ)). The multistate of a workstation affects the 

capacity usage of a buffer capacity. 

Consider a buffer bj,i/i+1 with the capacity kj,i/i+1 set 

between an upstream workstation aj,i and a downstream 

workstation aj,i+1. Given aj,i with a success rate pj,i, the 

expected output from aj,i is xj,i×pj,i. The possible capacity of 

aj,i takes value from {xj,i(1), xj,i(2), …,
,, ( )j ij i cx } with 

corresponding probability {πj,i(1), πj,i(2), …,
,, ( )j ij i c }. 

Similarly, the possible capacity of aj,i+1 takes value from 

{xj,i+1(1), xj,i+1(2), …,
,, ( )j ij i cx } with corresponding probability 

 
bj,i/i+1 aj,i+1 aj,i … … 



 

 

 

{πj,i+1(1), πj,i+1(2), …,
,, ( )j ij i c }. The difference between output 

from aj,i and the capacity state of aj,i+1 is xj,i×pj,i – xj,i+1. The 

extra amount of WIP is stored temporally in the buffer 

bj,i/i+1 if xj,i×pj,i – xj,i+1 > 0. 
To obtain the used capacity of a buffer, the buffer 

usage matrix (BUM) is proposed to state all the possible 

values of the difference between upstream and downstream 

workstations. The value of xj,i×pj,i – xj,i+1 indicates the 

amount of buffer capacity needed. If xj,i×pj,i – xj,i+1  0, it 

means that no buffer capacity is used and thus the buffer 

usage is zero. 
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(5) 

 

The corresponding probability distribution matrix is 
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3. RELIABILITY EVALUATION 
 

Under the capacity vector X = (x1,1, x1,2, …, x1,n, x2,1, 

x2,2, …, x2,n), the system reliability with unlimited buffer for 

demand pair (d1, d2) is defined as R(d1, d2). 

 
1 2 1, 1, 2, 2,1 1

( , ) Pr( ) Pr( )
 

    
n n

i i i ii i
R d d x y x y  (7) 

Considering Matrix (5), a buffer bj,i/i+1 is reliable when 

xj,i×pj,ixj,i+1  kj,i/i+1; that is, the used amount is less than the 

maximum capacity of the buffer. Let S be the event that the 

capacities (xj,i, xj,i+1) in Lj make the buffer bj,i/i+1 empty or 

partially empty. Therefore, (xj,i, xj,i+1)  S if and only if 

xj,i×pj,i – xj,i+1  kj,i/i+1. On the other hand, let F be the event 

that (xj,i, xj,i+1) make the buffer blocked. That is, (xj,i, xj,i+1) 

 F if and only if xj,i×pj,i – xj,i+1 > kj,i/i+1. By defining the 

buffer reliability of bj,i/i+1 as Pr(S|xj,i  yj,i and xj,i+1  yj,i+1), 

the reliability can be evaluated to get rid of dependency 

calculation according to Matrix (6). 

 

 

Table 1: Data of the MMN. 

L1 

Workstation a1,1 a1,2 a1,3 a1,4 a1,5 

Success rate 0.980 0.985 0.996 0.993 0.990 

Capacity 

(Probability) 

0 (0.010) 0 (0.005) 0 (0.002) 0 (0.001) 0 (0.001) 

10 (0.010) 15 (0.010) 5 (0.003) 5 (0.001) 6 (0.002) 

20 (0.010) 30 (0.010) 10 (0.005) 10 (0.001) 12 (0.002) 

30 (0.020) 45 (0.015) 15 (0.010) 15 (0.002) 18 (0.005) 

40 (0.950) 60 (0.960) 20 (0.010) 20 (0.002) 24 (0.010) 

  25 (0.015) 25 (0.003) 30 (0.980) 

  30 (0.955) 30 (0.010)  

   35 (0.010)  

   40 (0.970)  

L2 

Workstation a2,1 a2,2 a2,3 a2,4 a2,5 

Success rate 0.985 0.980 0.996 0.993 0.995 

Capacity 

(Probability) 

0 (0.010) 0 (0.005) 0 (0.001) 0 (0.001) 0 (0.002) 

10 (0.010) 15 (0.005) 5 (0.002) 5 (0.001) 6 (0.003) 

20 (0.010) 30 (0.015) 10 (0.002) 10 (0.001) 12 (0.005) 

30 (0.020) 45 (0.015) 15 (0.005) 15 (0.002) 18 (0.005) 

40 (0.020) 60 (0.960) 20 (0.010) 20 (0.002) 24 (0.010) 

50 (0.930)  25 (0.015) 25 (0.003) 30 (0.010) 

  30 (0.965) 30 (0.010) 36 (0.965) 

   35 (0.010)  

   40 (0.970)  



 

 

 

 

Figure 2: Manufacturing system with two production lines. 

For the case of multiple buffers in production lines, an 

aggregated value, namely aggregated buffer reliability Rb, 

is defined by 

 
, , , 1 , 11

Pr( | and for 1,2) 
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n

b j i j i j i j ii
R x y x y jS  (8) 

Hence, the system reliability to consider limited buffer 

capacity is 

 Rb(d1, d2) = R(d1, d2) × Rb (9) 

 
4. EXAMPLE 

 

A manufacturing system with two production lines, L1 

and L2, is used to demonstrate the proposed method (see 

Figure 2). There are five workstations in each production 

line, {a1,1, a1,2, a1,3, a1,4, a1,5} in L1 and {a2,1, a2,2, a2,3, a2,4, 

a2,5} in L2, and the buffers are set in front of the bottleneck 

workstations (i.e. a1,3, a1,5, a2,3 and a2,5). 

To satisfy the demand of d1 + d2 = 45 (items per unit 

time), the production policy is to produce (d1, d2) = (23, 22) 

by L1 and L2, respectively. The minimal capacity vector for 

(d1, d2) = (23, 22) is Y = (y1,1, y1,2, y1,3, y1,4, y1,5, y2,1, y2,2, y2,3, 

y2,4, y2,5) = (30, 30, 25, 25, 24, 30, 30, 25, 25, 24). Before 

further analysis on buffer reliability, the buffer is assumed 

to be unlimited. Thus, the system reliability R(23, 22) is 

derived by Eq. (7). 

R(23, 22) 

= Pr(X|X  (30, 30, ..., 24)) 

= Pr(x1,1  30) × Pr(x1,2  30) × … ×Pr(x2,5  24) 

= 0.970 × 0.985 × … × 0.985 

= 0.838654. 

 

That is, the probability that the demand can be 

satisfied is 83.87%. Please note that buffers are not 

considered so far. Furthermore, four buffers, {b1,2/3, b1,4/5, 

b2,2/3, b2,4/5}, are set in the manufacturing system. The 

buffer capacities are k1,2/3 = k2,2/3 = 30 and k1,4/5 = k2,4/5 = 10. 

The minimal capacity (y1,4, y1,5) = (25, 24) for a4 and a5, 

respectively. Two sets are obtained, {S|x1,4  25 and x1,5  

24} = {(25, 24), (30, 24), (25, 30), (30, 30), (35, 30), (40, 

30)} and {F|x1,4  25 and x1,5  24} = {(35, 24), (40, 24)}. 

Hence, the buffer reliability of b1,4/5 is Pr(S|x1,4  25 and x1,5 

 24) = (0.000030 + 0.000100 + 0.002940 + 0.009800 + 

0.009800 + 0.950600) / (0.000030 + 0.000100 + 0.000100 

+ 0.009700 + 0.002940 + 0.009800 + 0.009800 + 0.950600) 

= 0.990031. The underlined values are the probabilities of 

(x1,4, x1,5)  F. 

The other buffer reliabilities can be calculated in a 

similar manner. Note that, exception for {b1,2/3, b1,4/5, b2,2/3, 

b2,4/5}, there is no other buffer between the other pairs of 

workstations. This implies that their buffer capacities 

should be zero. The buffer reliabilities are provided in 

Table 2 and thus the aggregated buffer reliability Rb = 

0.908478. By apply Eq. (9), the system reliability is Rb(23, 

22) = R(23, 22) × Rb = 0.838654 × 0.908478 = 0.761898. 

That is, the probability that the demand can be satisfied as 

well as all buffers are not running out of storage is 76.19%. 

 

Table 2: Buffer reliabilities of the MMN. 

Production 

line 

Buffer 

station 

Buffer 

capacity 

Buffer 

reliability 

L1 b1,1/2 0 0.990057 

b1,2/3 300 0.984929 

b1,3/4 0 0.997026 

b1,4/5 100 0.990031 

L2 b2,1/2 0 0.970634 

b2,2/3 300 0.985158 

b2,3/4 0 0.997025 

b2,4/5 100 0.989981 

 

5. DISCUSSION 
 

In the MMN, it is reasonable and intuitive that the 

system reliability decreases while the total demand (d1 + d2) 

increases. Moreover, the production manager can assign 

demand to both production lines by using the system 

reliability as a reference. For example, if the total demand 

is d1 + d2 = 40, a suggested demand pair is (d1, d2) = (14, 26) 

with the optimal system reliability Rb(14, 26) = 0.856597 

when consider limited buffer capacity. Table 3 shows the 

system reliability with limited buffer capacities for d1 + d2 

= 40. One may notice that the system reliability does not 

change from (14, 26) to (12, 28). It is because that the 

 
b1,4/5 a1,5 a1,4 L1 output a1,1 a1,2 a1,3 

b2,4/5 a2,5 a2,4 a2,1 L2 input a2,2 a2,3 

L1 input 

L2 output 

     

b1,2/3 

b2,2/3 



 

 

minimal capacity vector is fixed as (20, 15, 15, 15, 18, 30, 

30, 30, 30, 30) within these demand pairs. 

 

Table 3: System reliability of the MMN. 

Demand pair 

(d1, d2) 

Buffer capacity 

R(d1, d2) 

(22, 18) 0.857669 

(20, 20) 0.838654 

(18, 22) 0.857759 

(16, 24) 0.853339 

(14, 26) 0.856597 

(12, 28) 0.856597 

 

6. CONCLUSION 
 

The main contribution of this paper is to evaluate the 

system reliability of an MMN with two production lines 

considering limited buffer capacities. In particular, the 

buffer usage matrix (BUM) is proposed to calculate the 

capacity usage of a buffer. Subsequently, the corresponding 

probability of BUM is used to obtain the buffer reliability. 

The buffer reliability affects the system reliability 

evaluation while considering limited buffer capacity. The 

case demonstration indicates that the assumption of 

unlimited buffer capacity buffer reliability may 

overestimate the system reliability. Therefore, it is 

necessary to model buffers into a network-structured MMN. 

Future works can be devoted to studying the case of 

multiple production lines. In the case of multiple 

production lines, the buffers may be located in parallel or 

be jointed. It would be a possible issue to compare the 

result of both allocations. 
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