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Abstract. In this paper an inventory system for items with a power demand pattern and backlogged shortages 

is developed. A known fixed time period is assumed and, moreover, the inventory cycle must be a multiple of 

that period. The holding cost, the backlogging cost and the ordering cost are the relevant costs considered in 

the inventory system management. The formulation of the inventory problem leads to a non-linear integer 

mathematical programming problem. An algorithmic procedure to calculate the economic order quantity and 

the optimal scheduling period that minimize the total cost per inventory cycle is proposed. Some numerical 

examples are solved to illustrate the theoretical results. 
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1. INTRODUCTION 
 

The basic inventory models suppose that demand rate 

is constant. However, generally demand for items varies 

with time and inventory models must consider that situation. 

Thus, it is more realistic to analyze inventory systems 

where demand changes with time. It would allow to model 

appropriately the behavior and evolution of the inventory of 

products. In the literature of inventory theory, models 

involving time variable demand have received attention 

from several researchers. Thus, Silver and Meal (1973) 

established an approximate approach for a deterministic 

inventory system with time-dependent demand. Donaldson 

(1977) presented an algorithm for solving the classical no-

shortage inventory policy for a linear trend in demand over 

a fixed time period. Ritchie (1984) analyzed the economic 

order quantity (EOQ) model with linear increasing demand. 

Dave (1981) studied a lot-size inventory model with a 

linear trend in demand and allowing shortages. Bahari-

Kashani (1989) studied the optimal replenishment for 

deteriorating items with time-proportional demand. 

Goswami and Chaudhuri (1991) developed an inventory 

model, assuming shortages and linear demand. Hariga and 

Goyal (1995) analyzed an inventory model with time-

varying demand rate, shortages and considering effects of 

inflation. Bose et al. (1995) analyzed an EOQ model for 
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deteriorating items with a linear positive trend in demand 

and shortages backlogged. Bhunia and Maiti (1998) studied 

an inventory system for deteriorating items considering 

replenishment cost dependent on lot-size and linear trend in 

demand. Chang and Dye (1999) discussed an EOQ model 

for deteriorating items with time varying demand and 

partial backlogging. Wu (2002) discussed also an EOQ 

model with time-varying demand, considering deterioration 

and shortages. Yang et al. (2004) presented an approach to 

analyze an inventory system with non-linear decreasing 

demand. Sakaguchi (2009) developed an inventory policy 

for a system with time-varying demand. Omar and Yeo 

(2009) studied an inventory system that satisfied a 

continuous time-varying demand. Mishra and Singh (2010) 

developed an inventory model with constant rate of 

deterioration and time dependent demand. 

The demand patterns are referred to as different ways 

by which products are taken out of inventory to supply 

customer demand. If the demand rate is the same during all 

the inventory cycle, the demand pattern is known as 

uniform demand pattern. However, there are other ways by 

which the units may be withdrawn throughout the period. 

The power demand pattern allows to suit demand to more 

practical situations. Thus, this pattern can not only 

represent the behavior of demand when is uniformly 

distributed throughout the period, but also models 

situations where a high percentage of units may be 

withdrawn at the beginning or at the end of the period.  

Several papers on inventory systems consider that the 

demand follows a power pattern. Thus, Goel and Aggarwal 

(1981) studied an order-level inventory system with power 

demand pattern for deteriorating items. Datta and Pal (1988) 

analyzed an inventory model with power demand pattern 

and variable rate of deterioration. Lee and Wu (2002) 

presented an inventory model for items with deterioration, 

shortages and power demand pattern. Dye (2004) extended 

this last model to a general class with time-proportional 

backlogging rate. Singh et al. (2009) analyzed an EOQ 

model for perishable items with power demand pattern and 

partial backlogging. Rajeswari and Vanjikkodi (2011) 

studied an inventory model for deteriorating items with 

partial backlogging and power demand pattern. Recently, 

Mishra and Singh (2013) presented an economic order 

quantity model for deteriorating items with power demand 

pattern and shortages partially backlogged. 

In all the above papers the scheduling period is a fixed 

period. Thus, the inventory total cost depends on a single 

decision variable. If the inventory system is without 

shortages, the decision variable is either the lot size or the 

initial stock level. On the other hand, when the inventory 

system allows shortages, the decision variable is time 

where the net stock level is zero.  

However, in the model here presented the inventory 

total cost will depend on two decision variables. Thus, we 

develop an inventory model for items with power demand 

on a known basic period. The inventory cycle must be a 

multiple of that period and the lot size must be also a 

multiple of the total quantity demanded along that basic 

period. Shortages are allowed and completely backlogged. 

The holding cost, the backlogging cost and the ordering 

cost are the three costs considered in the system 

management. The objective of the inventory problem 

consists of determining the optimal scheduling period and 

the economic lot size such that the total inventory cost per 

unit time is minimized. The formulation of this objective 

leads to a non-linear integer mathematical programming 

problem. An algorithmic procedure to calculate the 

economic order quantity and the optimal scheduling period 

that minimize the total cost per inventory cycle is proposed. 

The organization of the paper is as follows. In Section 

2 we introduce the notation used throughout of the paper 

and the basic assumptions considered for the inventory 

system. In Section 3, the mathematical model that describes 

the inventory problem is formulated. An algorithm to solve 

the inventory problem and determine the optimal policy is 

presented in Section 4. Some numerical examples are 

provided in Section 5 to illustrate the solution procedure. 

Finally, conclusions and future research are commented. 

 

2. HYPOTHESIS AND NOTATION 
 

We will use throughout the paper the following 

notation. 

 Basic time period. That period is fixed and 

known. 

D Demanded total quantity along the basic period τ. 

That quantity is known. 

r Average demand per basic period (r = D/τ). 

f(t) Demand up to time t (0  t  τ) along each basic 

period. Note that f(τ) = D. 

n Demand pattern index (n>0). 

T Length of inventory cycle or scheduling period. 

That period T must be a multiple of the basic 

period τ. 

k Number of basic periods that contains the 

inventory cycle (T = k). 

S Initial stock level or order level. That inventory 

level S must be a multiple of the demand D. 

m Integer positive such that S = mD. 

s Reorder point. The inventory should be 

replenished when s = (m-k)D. 

Q Lot size or order quantity. The lot size must be 

equal to Q = kD. 

I(t) Net inventory (on hand - backorders) level at time 

t (0  t  T). 

t0 Time at which the inventory level reaches zero. 



 

 

 

 

A Ordering cost. 

H Holding cost per unit and per time unit. 

W Backlogging cost per unit and per time unit. 

I1(k,m) Average amount carried in inventory. 

I2(k,m) Average shortage in inventory. 

I3(k) Number of replenishments per unit of time. 

C1(k,m) Holding cost per unit of time. 

C2(k,m) Backlogging cost per unit of time. 

C3(k) Ordering cost per unit of time. 

C(k,m) Total cost per unit of time of the inventory 

system. 

The inventory system is based on the following 

assumptions: 

A single item is considered in the inventory system. 

The planning horizon is infinite. 

The fluctuations of the net stock level are repeated on 

time along each inventory cycle. 

The replenishment rate is infinite. 

Lead time is zero or negligible. 

Shortages are allowed and completely backlogged. 

Demand during the basic period τ follows a power 

demand pattern. The average demand r (i.e., r = D/τ) per 

basic period is deterministic, but the manner in which 

quantities are extracted of inventory depends on the time 

when they are removed. This way by which demand occurs 

during the period τ is known as the demand pattern. Thus 

the demand f(t) up to time t (0  t  τ) varies with time and 

is assumed to be f(t) = rt1/n/τ(1-n)/n, where r is the average 

demand and n is the pattern index, with 0<n<. The 

demand rate at time t (0  t  τ) is f´(t) = rt(1-n)/n/nτ(1-n)/n.  

This pattern in the demand is called the power demand 

pattern (see Naddor, 1966; Datta and Pal, 1988; Lee and 

Wu, 2002; Rajeswari and Vanjikkodi, 2011; Sicilia et al., 

2012; and Sicilia et al., 2013). 

The decision variables are the integer values k and m, 

with 1 ≤ m ≤ k. If we determine those values, then we 

obtain the initial stock level S = mD, the scheduling period 

T = k, the reorder point s = (m-k)D and the lot size Q = kD. 

The input parameters of the inventory system are D, τ, n, h, 

w and A. 

The aim consists of determining the optimal 

scheduling period, the economic ordering quantity (EOQ) 

and the optimal reorder point that optimize the management 

of the inventory system described by the previous 

hypotheses. In the following section we present a 

mathematical model to study the inventory policy. 

 

3. MATHEMATICAL FORMULATION OF 
THE INVENTORY PROBLEM 
 

Let us consider an inventory system in which there is a 

basic period τ during which the behavior of customers’ 

demand follows a power pattern with index n. An example 

of such a situation occurs for products as coffee, milk, 

breads, croissants, fruit, newspapers, journals, etc. In these 

cases the demands of these goods toward the beginning of 

the day (basic period) are greater that on the afternoon or 

evening. Those demands are modeled by using a power 

demand pattern with index n > 1. Another situation occurs 

when the demand of a product toward the beginning of the 

day is smaller than the demand at the end of the day. That 

situation occurs, for example, for items as pizzas, 

hamburgers, hot dogs, cinema tickets, popcorns, etc. In 

these cases demands are modeled by a power demand 

pattern with index n < 1.  

The replenishment of the inventory is made every T 

time units. That inventory cycle or scheduling period T 

must be a multiple of the basic period τ. Hence, T = kτ, 

being k a positive natural number. As the known demand 

over the basic period is D, then along every inventory cycle 

the total demand will be kD units. Therefore, the 

replenishment size or lot size must be Q = kD units, 

because the ordering quantity to replenishment the 

inventory must be equal to the total demand along the 

inventory cycle. 

Let I(t) be the net stock (on hand - backorders) level at 

time t (0 ≤ t ≤ T). At the beginning of the inventory cycle, 

the initial net stock level is S units. That level must be a 

multiple of the D units because that quantity represents the 

demand along the basic period τ. Hence, we have that S = 

mD, being m a integer number. Thus, at time t0 = mτ, the 

inventory level attains a level zero. During the scheduling 

period [0,T] the stock level declines due to demand of 

items. At t = T, the inventory attains a level s (reorder 

point). That reorder point is determined by the difference S 

– Q. Hence, the reorder point is a value given by s = (m-

k)D units. Next, the inventory is filled with a replenishment 

quantity or lot size Q = kD units, which raises the inventory 

stock up to level S and a new inventory cycle starts again. 

Note that in each inventory cycle the lot size Q is equal to 

the total demand rT because k = T/ and r = D/. 

The inventory cycle, or time period, T can be 

partitioned in k time intervals of equal length τ. Thus, we 

have 

[0, ] [0, ] [ ,2 ] .... [( 1) , ]T k k T           

Under the assumptions previously commented in 

Section 2, the differential equation that describe the 

fluctuations of the net stock level I(t) over every time 

interval ((i-1)τ, iτ), with i = 1,2,...,k, is 

(1 )/

(1 )/

( ) [ ( 1) ] n n

n n

dI t r t i

dt n









 
    (1) 

The boundary conditions are I(0) = S and I(iτ)=(m-i)D, 

for i=1,2,…,k-1. Note that these conditions imply that I(t0) 

= 0 and I(T) = s. 

The solution of the above differential equation over 



 

 

 

 

the time interval [0,τ] leads to 

1/

1 (1 )/
( ) ,    if    0n

n n

r
I t S t t 

 
      (2) 

For i = 2,...,k, the equation of the inventory level over 

the time period [(i-1)τ, iτ] is 

1/

(1 )/
( ) (( 1) ) [ ( 1) ] ,   

                                  if   ( 1)

n

i n n

r
I t I i t i

i t i

 


 


    

  

 (3) 

Thus, the inventory level function I(t) over the 

scheduling period [0,T=k] is given by 

1/

(1 )/
( ) ( ) ( 1) [ ( 1) ] ,   

               if   ( 1) ,     for    1,2,..., .

n

i n n

r
I t I t m i D t i

i t i i k




 


      

   

  (4) 

Note that the net stock level I(t) is always a continuous 

and decreasing function on the time period [0,T). In 

addition, the decreasing evolution of the stock level is the 

same over every time interval [(i-1)τ, iτ], for i = 1,2,…,k.  

Both the average amount carried in inventory I1(k,m) 

and the average shortage I2(k,m) depend on the positive 

integer variables k and m.  

As 1 ≤ m ≤ k, then some inventories are carried and 

also shortages can occur. At time t = t0 = mτ the inventory 

stock attains a level zero. Thus, along the interval [t0,T), 

shortages occur in the inventory system and they are 

backlogged at the end of period.  

The total amount carried in inventory during the 

period [0,t0] is the sum of the quantities carried in inventory 

along of periods [(i-1)τ, iτ], for i = 1,2,…,m. That total 

amount is 

1 ( 1)

( 1) 1
( )

2( 1)

im

i

i i

m n n
I t dt mD

n






 

   
  

 
    (5) 

Thus, the average amount carried in inventory during 

the period [0,T] is given by the expression 

1

1 ( 1) 1
( , ) ( )

2( 1)

( 1) 1
            

2( 1)

m n n
I k m mD

T n

mD m n n

k n


   

  
 

   
  

 

  (6) 

Now, we have to calculate the shortages during the 

inventory cycle. It is determined by the sum of the 

shortages obtained in every time interval [(i-1),i], for i 

=m+1,..., k. Thus, we have 

1 ( 1)

( )( 1) 1
[ ( )] ( )

2( 1)

ik

i

i m i

k m n n
I t dt k m D

n






  

    
    

 
    (7) 

Hence, the average shortage in the inventory during 

the period [0,T] is 

2

1 ( )( 1) 1
( , ) ( )

2( 1)

( ) ( )( 1) 1
            

2( 1)

k m n n
I k m k m D

T n

k m D k m n n

k n


    

   
 

     
  

 

 (8) 

Finally, the average number of replenishments per unit 

of time is always I3(k) = 1/T=1/(k). 

In the following paragraphs, we determine the costs 

subject to control in the inventory system. The inventory 

total cost per unit time consists of the following cost 

components: holding cost, backlogging cost, and ordering 

cost. 

The holding cost per unit of time is 

1

( 1) 1
( , )

2( 1)

mD m n n
C k m h

k n

   
  

 
 (9) 

The backlogging cost per unit of time is 

2

( ) ( )( 1) 1
( , )

2( 1)

k m D k m n n
C k m w

k n

     
  

 
 (10) 

The ordering cost per unit of time is 

3 ( )
A A

C k
T k

     (11) 

The total inventory cost per unit of time is the sum of 

the above costs. Hence, that total cost is given by 

( 1) 1
( , ) ( )

2( 1)

( 2 )( 1) 1
             

2( 1)

mD m n n
C k m h w

k n

k m n n A
wD

n k

   
   

 

    
  

 

 (12) 

Thus, we have to solve the following non-linear 

integer mathematical programming problem: 

( 1) 1
Min      ( , ) ( )

2( 1)

( 2 )( 1) 1
                        

2( 1)

subject   to      and    are  integer  variables 

                     with  1

mD m n n
C k m h w

k n

k m n n A
wD

n k

k m

m k



   
   

 

    
  

 

 

 (13) 

 

4. SOLVING THE INVENTORY PROBLEM 
 

To find the solution of the inventory problem, we have 

to seek the minimum of the function C(k,m) for the range 

1≤m≤k, with k and m integer variables. 

Relaxing the integer restrictions on the variables, and 

assuming that now k and m are continuous variables, then 

we could use the differential calculus to obtain the optimal 



 

 

 

 

solution for the continuous inventory problem. 

Differentiating with respect to m, we have 

( ) ( ) (1 )

2 ( 1)

C h w mD h w D n
wD

m k k n

   
  

 
 (14) 

and differentiating with respect to k, we obtain 

2 2

( ) ( 1) 1

2( 1) 2

C h w mD m n n wD A

k nk k 

     
    

  
 (15) 

To find the minimum point (k0,m0), we have to solve 

the equations 

( ) ( ) (1 )
 0

2 ( 1)

h w mD h w D n
wD

k k n

  
  


 (16) 

2 2

( ) ( 1) 1
 0 

2( 1) 2

h w mD m n n wD A

nk k 

    
    

 
 (17) 

From (16), we obtain m as a function of k, that is, 

(1 )
( )

2(n 1)

kw n
m m k

h w


  

 
  (18) 

Substituting m = m(k) in equation (17), and solving 

that equation with respect to variable k, we have 

2 2

0 2

2 ( ) ( ) (1 )

4 ( 1)

A h w h w n
k

hw D hw n

  
 


 (19) 

From (18), we obtain 

2

0 2

2 (1 ) 1

( ) 2( 1)4 ( 1)

Aw w n n
m

h h w D nh n

 
  

 
 (20) 

Substituting k0 and m0 given in (19) and (20) in the 

cost function (12), we have the cost 

2

0 0 0 2

2 ( ) (1 )
( , )

4( 1)

hwD A h w D n
C C k m

h w n

  
   

  
  (21) 

Note that the terms inside the roots in (19), (20) and 

(21) should be positive values. Thus, the condition 
2 28 ( 1) ( ) (1 )A n h w D n     (22) 

must be satisfied.  

In addition, an easy computation shows that the 

Hessian at point (k0,m0) is positive when (22) is true.  

Therefore, if the condition (22) is satisfied, then 

(k0,m0) is a minimum point of the function C(k,m) given in 

(12) when the variables k and m are continuous variables.  

 

If the variable m is fixed, the following result shows 

that the cost function C(k,m) has a minimum point on the 

straight line determined by m.  

 

Theorem 1. Consider m and k as continuous variables 

on the region  = {(k,m)/ k>0, m≥1}. Fixed m, with m≥1, 

the cost function Cm(k) = C(k,m) is a convex function with 

respect to the variable k and has a minimum point at the 

value km given by 

( ) [( 1) 1] 2 ( 1)
 

( 1)
m

h w mD m n m A n
k

wD n





     



 (23) 

 
Proof. The proof is immediate.                      □ 

 
If we substitute km in the function C(k,m) given in 

(12), then we obtain a cost function that depends of m only, 

that is 

( 1) 1
( ) ( , ) ( )

2( 1)

( 2 )( 1) 1
         

2( 1)

m

m

m

m

mD m n n
C m C k m h w

k n

k m n n A
wD

n k 

   
    

 

    
  

 

 (24) 

In the following result we study how is the behavior of 

the function C(m) given by (24). 

 

Theorem 2. Let us assume that m is a continuous 

variable. 

(a) If the condition (22) is true, then C(m) = C(km,m) is 

a convex function on the region characterized by m≥1. 

(b) If (22) is false, then C(m) = C(km,m) is a concave 

and increasing function on the region determined by m≥1. 

 
Proof. Substituting (23) into (24) and differentiating 

C(m) with respect to m, we have 

2 32 ( 1) 1 ( ) ( 1)

2( 1) ( ) [( 1) 1] 2 ( 1)

( )
 

m n n h w wD n

n h w mD m n m A n

C m
wD

m





    

      


 


 (25) 

Note that the above derivative is positive if, and only 

if, the equation m2+bm+c > 0, being 

2

2

1 ( 1) ( ) 2
    and   .

1 ( )4( 1)

n n h w Aw
b  c

n Dh h wn h 

  
  

 
 (26) 

As the discriminate of the above equation is 

2 2
2

2

[8 ( 1) ( )( 1) ]
4

( )( 1)

A n h w n D w
b c

Dh h w n





   
   

 
 

We have the following cases: 

- If 8A(n+1)2= (h+w)Dτ(1-n)2, then  = 0. Thus, for all m ≥ 

1, we have 

 
2

2 1

2 1
0n

(n )
m bm c  m 


      

Hence, in this case, the derivative ∂C(m)/∂m >0 and C(m) 

is an increasing function on the interval [1,).  

- If 8A(n+1)2< (h+w)Dτ(1-n)2, then  < 0 and m2+bm+c > 

0 always. Therefore, in this case, ∂C(m)/∂m >0 and C(m) 

is increasing for all m. 

- If 8A(n+1)2> (h+w)Dτ(1-n)2,  then  > 0 and the 

equation m2+bm+c = 0 has two real roots. Thus, in this 

case, the function C(m) is decreasing for m  m0 and is 



 

 

 

 

increasing for m ≥ m0, being m0 the value given by (20). 

 
In addition, the second derivative of C(m) is 
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As km > 0 for all m≥1, then the sign of the second 

derivative depends on whether the condition (22) is or not 

is true. Thus, if 8A(n+1)2 >(h+w)Dτ(1-n)2, then that second 

derivative is positive and the function C(m) is convex for 

all m. 

Otherwise, the function C(m) is increasing and 

concave for m≥1. 

 

Corollary 1. Let us consider that m is a continuous 

variable. 

(a) If the condition (22) is true, then the minimum point 

of the function C(m) = C(km,m) on the region  

characterized by m≥1 is given by the formula (20).  

(b) If (22) is false, then the minimum point of the 

function C(m) = C(km,m) on the region  is m=1. 

 
Proof. It follows easily from Theorem 2.            □ 

 

Taking into account the above results, we can develop 

a procedure to obtain the optimal integer solution for the 

problem shown in (13), which is exposed in the following 

section. 

 

4.1 Optimal approach 
 

A simple procedure to give an optimal integer solution 

for the inventory problem is below presented.  

 

4.1.1 Algorithm 
 

Step 1 Set m = 1. Using the formula (23), calculate the 

point 

1

2( ) 2 ( 1)
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- If k1 ≤ 1, then choose as initial solution (k*,m*) = 

(1,1). Compute C(k*,m*) = C(1,1) by using the 

formula (12). Go to step 4. 

- Otherwise, go to step 2. 

Step 2 Determine the largest integer not greater than k1 

and the smallest integer not less than k1, that is, the 

integers k11=k1 and k12=k1. Compute the costs 

C(k11,1) and C(k12,1).  

- If C(k11,1) ≤ C(k12,1), then choose the value k'1 = 

k11. Go to step 3. 

- Otherwise, consider k'1= k12. Go to step 3. 

Step 3 Set as initial solution (k*,m*)=(k'1,1) with cost 

C(k*,m*) = C(k'1,1). Go to step 4.  

Step 4 Set m = 2. Calculate the point k2 by using the 

formula (23), that is 

2
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Compute the cost C(k2,m=2) by using the formula 

(24). Go to step 5. 

Step 5 If  8A(n+1)2 > (h+w)D(1-n)2, go to step 6. 

Otherwise, go to step 9. 

Step 6 Obtain the optimal solution (k0,m0) given by (19) 

and (20) for the inventory problem with 

continuous variables. Calculate the minimum cost 

C0 given by (21). Go to step 7. 

Step 7 If m < m0, then go to step 10.  

Otherwise, go to step 9. 

Step 8 Put m = m+1. Calculate the point km by using the 

formula (23). Determine the cost C(km,m) by using 

the formula (24). Go to step 9. 

Step 9 If C(k*,m*)  C(km,m), then the optimal solution is 

the point (k*,m*) and the minimal integer cost is  

C(k*,m*). Stop. 

Otherwise, go to step 10. 

Step 10 Determine the largest integer not greater than km 

and the smallest integer not less than km, that is, the 

integers km1=km and km2=km. Compute the costs 

C(km1,m) and C(km2,m).  

- If C(km1,m) ≤ C(km2,m), then choose the value k'm 

= km1. Save the point (k'm,m) and the cost C(k'm,m). 

Go to step 11. 

- Otherwise, choose k'm = km2. Keep the point 

(k'm,m) and the cost C(k'm,m). Go to step 11. 

Step 11 Compare the costs of the points (k*,m*) and 

(k'm,m). 

- If C(k*,m*)≤C(k'm,m), then keep the point (k*,m*) 

and remove the point (k'm,m). Go to Step 8. 

- Otherwise, save the point (k'm,m). Set (k*,m*) = 

(k'm,m) and C(k*,m*) = C(k'm,m). Back to Step 8.  

 

It is interesting to compare the solution (k*,m*) 

obtained by the above algorithm with the solution (k0,m0) 

in which no integer constraint is imposed on the m and k 

values. Note that C* ≥ C0 always, and the gap between C* 

and C0 gives a measure of the goodness of the integer 

solution. Thus, the ratio  = (C*- C0)/C0 can be used as a 

measure of the approximation between the integer and 

continuous solutions. 

 

5. NUMERICAL EXAMPLES 
 

In this section we present several numerical examples 

to illustrate the theoretical results.  



 

 

 

 

Example 1. Let us consider the following parametric 

values for an inventory system with appropriate units: the 

basic period is  = 1 week, demand is D = 40 units, average 

demand is r = 40 units per week, A = $ 600 per order, h = 

$ 4 per unit per week, w = $ 2 per unit per week, and the 

demand pattern index n = 1/2. Firstly, from (28), we 

calculate the point k1= 4.35890. Then, we consider the 

integers k11 = k1 = 4 and k12 = k1 = 5. Now, we compute 

the costs C(4,1) = $ 256.667 and C(5,1) = $ 258.667. As 

C(4,1) < C(5,1), the initial solution is (k*,m*) = (4,1). Next, 

from (29), we calculate k2 = 5.38516 and compute the cost 

C(k2,2) = $ 257.480. Then, we check that the condition (22) 

is satisfied. Following the algorithm given in Section 4, we 

calculate the values m0 and k0 given in (19) and (20). 

Thus, we obtain k0 = 4.73022 and m0 = 1.41007. As m = 2 

is greater than m0, in Step 9, we compare C(k*,m*) with 

C(k2,2). Thus, the optimal solution is C(k*,m*) = (4,1) with 

cost C* = C(4,1) = $ 256.667. Hence, the scheduling period 

is T* = 4 weeks and the lot size is Q* = 160 units. From 

(21), the minimum cost for the continuous inventory 

problem is C0 = $ 252.279. Hence, the measure of the 

goodness of the optimal integer solution with respect to the 

continuous one is  = 0.0173941. It means that the integer 

solution is very close to the minimum cost of the 

continuous optimal policy. 

Example 2. We consider now the same input 

parameters than the above example, but only changing the 

index of the power demand pattern to n = 3. From (28), we 

have k1 = 4.06202. Next, we calculate C(4,1) = $ 265; and 

C(5,1) = $ 272. As the lower cost corresponds to (4,1), the 

initial solution is (k*,m*) = (4,1). Then, from (29), we 

obtain k2 = 4.89898 with cost C(k2,2) = $ 251.918. The 

condition (22) is again satisfied. Thus, from (19) and 

(20), we have k0 = 4.71368 and m0 = 1.82123. In this case, 

the minimum cost of the continuous inventory problem is 

C0 = $ 251.396. As m = 2 > m0, we compare C(k*,m*) = 

$ 265 with C(k2,2) = $ 251.918. As C(k*,m*) > C(k2,2), 

then we calculate the costs C(4,2) = $ 260 and C(5,2) = 

$ 252. Keep the point (5,2) with cost C(5,2) = $ 252. Now, 

the new solution is (k*,m*) = (5,2). Next, we set m = 3, 

calculate k3 = 6.12372 and the cost C(k3,3) = 269.898. As 

C(5,2) = $ 252 < C(k3,3), then the optimal integer solution 

is the point (5,2) with cost C(5,2) = $ 252. The inventory 

cycle is T* = 5 weeks and the lot size is Q* = 200 units. As 

can be seen, the cost of the optimal integer policy is very 

close to the continuous one. 

Example 3. Consider the same input parameters than 

the Example 1, but only changing demand to D = 8000 

units. We start calculating the point k1 = 2.01866. Next, we 

calculate the costs C(2,1) = $ 13633.33 and C(3,1) = 

$ 16200. As the lower cost corresponds to (2,1), that point 

is the initial solution, that is, (k*,m*) = (2,1). We set m = 2 

and calculate k2 = 3.75167 with cost C(k2,2) = $ 25359.99. 

In this case, the condition (22) is false. As C(2,1) < C(k2,2), 

then the optimal solution is the point (k*,m*) = (2,1) and 

the minimal integer cost is C(2,1) = $ 13633.33. Hence, the 

inventory cycle is T* = 2 weeks and the lot size is Q* = 

16000 units. 

 

6. CONCLUSIONS AND FUTURE RESEARCH 
 

In this paper we develop an inventory model for a 

single product where the demand over a basic time period 

follows a power demand pattern. The shortages are allowed 

and will be filled with the arrival of a new lot of products.  

The replenishment of the inventory is made every 

scheduling period, being that period a multiple of the basic 

period. Also, the lot size or ordering quantity to 

replenishment the inventory must be equal to a multiple of 

the demand along the basic period.  

We have proposed an approximate approach to 

calculate the inventory policy. Thus, we have presented an 

algorithmic procedure to determine easily the inventory 

policy, that is, the scheduling period, the economic lot size 

and the inventory cost. 

A future study will incorporate in the proposed model 

new assumptions such as deterioration of the products, 

replenishment non-instantaneous, and/or lost sales cost.  
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