
Parallel Algorithm for

Combination of SQP and PSO

En-Cheng Chang

Department of Industrial Engineering and engineering Management

National Tsing Hua University, Hsinchu, Taiwan

Tel: (+886) 3-5717654, Email: p2921185@gmail.com

Yu-Ching Lee

Department of Industrial Engineering and engineering Management

National Tsing Hua University, Hsinchu, Taiwan

Tel: (+886) 3-5717654, Email:yclee@ie.nthu.edu.tw

Abstract. The optimization technique has been developed in several ways, but as the amount of data increase,

the optimization solvers’ speed has become an important issue. Therefore, in this paper we first evaluate the role

of probabilistic methods and SQP in the solution technique of optimization problems, then we apply SQP as the

main solver to solve constraint optimization problems. To build the solver program, we take python as the major

language and use the message passing interface (MPI) library to parallel the original sequential algorithm. In order

to measure the speedup after parallelism, this research will implement both the sequential algorithm and the

parallel algorithm in multiple clusters system and then conclude the efficiency of parallel computing in solving

the large scale problems.

Keywords: Nonlinear programing, Parallel algorithm, Sequential quadratic programing, Particle swarm

optimization, Message passing interface

1. INTRODUCTION

Solving optimization problem is one of the core

technologies in the modern industries where the operations

research methods are utilized and in artificial intelligence

where the machine learning techniques, e.g., pattern

recognition and prediction, are employed. As the

mechanisms people wish to formulate become more

sophisticated than ever, the required size of variables and

constraints in the mathematical programming formulation

for a real system have enlarged significantly. Generally

speaking, there are two directions of the algorithmic

development for solving the large-scale optimization

problems. The first direction focuses on the improvement of

the serial algorithms running on a single machine which

ideally is a high-performance computer, whereas the second

direction focuses on the development of the distributed

(parallel) algorithms performing subroutines on a cluster of

the computers. In this work, we study an algorithm from the

perspective of the second path for solving the nonlinear

constrained optimization problems.

We propose a parallel scheme for the popular nonlinear

constrained optimization algorithm known as the Sequential

Quadratic Programming (SQP henceforth). It is widely

recognized that the improvement of runtime of a distributed

optimization algorithm compared with its serial counterpart

is restricted. It is because of the excessive demand of

information passage arising from stationarity verification,

feasibility confirmation, and improvement computation (in

terms of a search direction) in any convergent optimization

algorithms including SQP. On the other hand, performing-

optimization algorithms include heuristics and meta-

heuristics (without convergence result) can be greatly

parallelized and the implementation of parallelism is

relatively simple. Motivated by this, we adapted a meta-

heuristics known as the Particle Swarm Optimization (PSO

henceforth) to the distributed computing environment and

embedded the parallel PSO in the SQP method.

 The implementation of the proposed parallel

algorithm is done in MPI. This algorithm is compared with

(i) the serial PSO, (ii) serial SQP and PSO combination, and

(iii) parallel PSO, based on three quantities (speedup,

efficiency, and accuracy.) In the scope of this paper, the

numerical result is primarily obtained from the small-size

instances. The experiment results show that the parallel SQP

and PSO combination performs well in both the speedup and

file:///C:/Users/en%20cheng/Downloads/%20p2921185@gmail.com
mailto:yclee@ie.nthu.edu.tw

the efficiency. These results act as evidence showing that the

proposed design has potential in solving large-scale

optimization problems in parallel while the convergence to

stationarity remains.

1.1 Sequential Quadratic Programming

Sequential quadratic programming is an optimization

technique for solving nonlinear programming. Consider a

minimization problem of the form minx { f(x) | g1(x),…,gj(x)
≤ 0}. The SQP method translates the original problems into

exact penalty problems as follows:

min
x

𝑓(𝑥) + 𝑐𝑃(𝑥)

 𝑃(𝑥) = max {𝑔𝑖(𝑥) … 𝑔𝑗(𝑥)} (1)

Then, we switch to solve the necessary condition of (1).

The condition is formed as a subproblem at an x as in below:

min
d

∇𝑓(𝑥)′𝑑 +
1

2
𝑑′𝐻𝑑

 s. t 𝑔(𝑥) + ∇𝑔(𝑥)′𝑑 ≤ 0 (2)

In this subproblem, we solve for the best improvement

direction instead of solving for the variables x. After the

improvement direction is found, we can judge whether the x

vector is a stationary point or not. If the direction doesn’t

equal zero, it means that the solution of the variables x still

needs to be updated. The next point will be updated by the

current point and the computed direction d. Conversely, if

the direction equals zero, it represents that the current point

is a stationary point and may be the solution of the original

problem (Bertsekas, 2016).

Every time before we solve program (2), we need to

calculate the values of all the constraints at the certain

solution, and then pick the constraint with maximum value

as max constraint P(x) to form the subproblem (2). If the

amount of constraints is huge, the computers will take a lot

of time to calculate the maximum value of each constraint.

Hence, we consider dividing the constraints into different

processors and calculating them synchronously.

1.2 Parallel Computing Frameworks

To parallel the original algorithm, there are a lot of tools

that can be utilized, for instance, OpenMP and MPI. OpenMP

is usually employed in a shared memory system, and in such

a system, most variables are open variables. Thus, different

threads can share the variable immediately and can calculate

data quickly (Kang et al, 2015).

MPI is usually used in multiple clusters system, but it

can also be implemented in a single memory system. The

delivery medium of MPI is the high speed internet. Even

though MPI is fast in running speed, it is generally not faster

than OpenMP.

 Compared with OpenMP and MPI in the normal-size

problems, which can be afforded in a single memory system,

OpenMP is the best tool because its speed is three times faster

than MPI. However, if the size of the problem is so large that

one computer can’t handle, MPI is the only option. In our

other research, we face a problem which can’t be afforded in

a single memory system. Thus, we tend to apply MPI as our

main tool.

1.3 Measures for Parallel Computing Performance

 The most important aspects of parallel computing are

the speedup and the efficiency. The benchmark for the

runtime of a parallel computing procedure is that follows the

Amdahl’s law, which is shown below:

 𝑇𝑃 =
𝑎𝑇𝑆

𝑃
+ (1 − 𝑎)𝑇𝑆 (3)

TP represents the runtime of the parallel algorithm. TS

represents the runtime of the sequential algorithm and 𝑎

here represents the proportion of parallelism. The formula (3)

indicates that the runtime of parallel program should

approach the parallelism proportion of sequential algorithm,

which pulps the number of processors P and then adds non-

parallelism proportion of sequential algorithm time.

The speedup of parallelism can be evaluated by the

following formula:

 𝑆 =
𝑇𝑠

𝑇𝑃
 (4)

We hope that the speedup S can be almost equal to the

total number of processors P, but it’s very difficult to achieve

for two main reasons.

First, parallel computing has a limit. According to

formula (3) and formula (4), if we keep increasing processors

as computing node into clusters system, we can get a formula

as follows:

 lim
𝑃→∞

𝑆 =
𝑇𝑠

𝑎𝑇𝑠

𝑃
+(1−𝑎)𝑇𝑠

 (5)

Most parallel algorithms take ninety percent as a high

level of parallelism. Based on formula (5), the speedup limit

will be equal to the reciprocal of non-parallelism proportion.

Therefore, the limit of the speedup is difficult to be over ten

times. It means that attaining a higher proportion of

parallelism is an important issue in parallel computing.

Second, in parallel computing, we sometimes need a

master computer as a center node which is responsible for

integrating the whole numerical result. In such a structure,

the limit of speedup S will be P-1, and thus it is impossible

to have the speedup equal to the number of processors P.

Therefore, we use formula (6), which represents the

acceleration per processor, to evaluate the parallelism,

 𝐸 =
𝑆

𝑃
 (6)

Above all, we comprehended the factors affecting the

parallel efficiency. The major factor is the parallelism

proportion. In the light of our preliminary experiment results,

the most convenient way to parallel over ninety percent is to

partition the data. If the amount of data can be partitioned

into P parts and be respectively assigned to different

processors, then the load of each processor can be thus

reduced to 1/P. Among the parallel nonlinear programing

solvers, the probabilistic methods can especially perform

such a partition (Dixon and Jha ,1993). For instance,

multistart method can respectively start from several points

by different processors and find local minimum

asynchronously to reach its stop criteria. Particle swarm

optimization can divide the swarms into several processors

uniformly, each processor is in charge of its own part. Thus,

the load of each processor decreases significantly. (Chang et

al, 2005).

Multistart is generally used to find the global solution.

However, PSO can be implemented to find both the local

solution and the global solution based on the parameter it is

set. Hence, we consider PSO to be more flexible and more

suitable to be combined with SQP to develop a new

algorithm (SQP_PSO henceforth), and parallel it to test the

value of the new parallel algorithm.

2. METHOD: SQP_PSO Combination

 The parallel algorithm of PSO was published in the last

few years. According to previous research, we consider PSO

to be valuable in parallel computing. However, when we

tried to apply PSO as the main parallel algorithm, we

discovered some disappointing issues. In constrained

problems, the particles need to test whether they are in the

feasible region or not. Hereby, when the constraints increase,

the running times for checking the feasibility for every

constraint also increase. It thus takes much time.

 For this reason, we considered importing SQP method,

which performs exact penalty function and can remove

redundant constraints temporarily. After removing

constraints, we assume PSO can be used as the main solver

of subproblem in effect (Parsopoulos and Vrahatis, 2002).

After the model of SQP_PSO is built preliminarily, we

divide the work of calculating the maximum values of

constraints into several processors. Each processor will

handle equal amounts of constraints. After all the processors

have completed their work, the multiple clusters system will

return the data we want by the function we use. MPI_Send is

a point-to–point function, it may cause critical section when

all the slave processors send the maximum value

synchronously. However, MPI_Reduce is a collective

communication function which can avoid critical section.

Hence, we tend to apply function MPI_Reduce to obtain the

constraint with max value instead of MPI_Send (P. Pacheco,

2011). The idea of this communication can be comprehended

by Figure 1.

Figure 1. The model of parallel SQP

In Figure 1, different colors represent different

constraints, and all the constraints are imported into each

processor automatically. After calculating the values of the

constraints, all the processors reduce the value we want into

the processor zero. The processor zero then soon broadcast

the constraint with maximum value into all the slave

computers by function MPI_Bcast and the subproblem will

be built in each processor.

The approximate runtime in PSO is influenced by the

amount of particles and the iteration times. To maintain the

accuracy of PSO, we can’t decrease the amount of particles

and the iteration times below a certain level. We thus decided

to divide particles into P-1 parts, and assign them into P-1

processors. If the calculation data has been divided first, the

workload in each processor can be reduced significantly.

Figure 2 represents the above opinion

In Figure 2, particles are assigned equally into P-1 slave

processors. When all particles start to move, the direction and

velocity are dependent upon its inertia, self-experiment and

global experiment. Therefore, every time when the best

solution in each processor is produced, the slave processors

need to send the position and related information of the best

solution to the master computer. The master computer then

integrates the particles information it receives, and sends the

best solution to all slave processors after arrangement.

Figure 2. The model of parallel PSO

 With Figure 1 and Figure 2, we can combine parallel

SQP and parallel PSO. Figure 3 is the combination of it. In

Figure 3, we set the processors zero as the master computer

to monitor the process of PSO. After the subproblem is

solved, if the variables of the original problem still need to

be modified, the master computer will broadcast the solution

information to all the processors including itself. Then, all

the processors update the numerical data and recalculate the

value of each constraint to build a new subproblem until the

stationary point is obtained.

We switch the role of the processors zero because there

is no need to monitor the SQP part. To change the processor

zero’s role here can increase the number of computation

nodes, it thus becomes more valuable.

We write all the work in the same program, thus all the

processors can run the same program in parallel. Figure 4 is

the main algorithm of it. Before starting to run, all the

processors will be assigned a rank. Rank zero represents the

master computer, if the rank is greater than zero represents

that it’s a slave computer.

Figure 3. The model of parallel SQP and parallel PSO

Figure 4. The algorithm of parallel SQP and parallel PSO

3. IMPLEMENTATION

 After finishing building the model of the new

algorithm, we start to program. However, we encountered

some problems which needed to be studied and researched

for a while.

3.1 Computation Error

 There exists a floating point calculation error in

machine language, especially in different languages. We

tried to program the sequential program in two languages,

such as MATLAB and Python. In both languages, the

direction we obtained from the subproblem can’t equal zero.

The reason for this is possibly a floating point error.

Therefore, if we set stop criteria as direction should equal

zero then break the loop, the iteration will not stop but keep

calculating. This error (jumping problem thereafter) usually

causes the solution of variables to be over improved and

repeat calculating subproblem instead of falling into a

stationary point.

 In MATLAB we define the sum of the square of all

directions as error. If the error is less than 10−4, then the

program terminates. After this revision, the jumping problem

which was caused by a floating point error can be solved and

the objective value can also be converged to local minimum

smoothly.

In Python, we also define the sum of the square of all

direction as error, and set the error as the stop criteria.

However, the jumping problem still exists. We thus decide to

focus on the direction. If the direction continues to decrease

and the objective value is approaching a better value, we tend

to judge that it’s going to arrive at a stationary point, then we

force it to stay on the same constraint and do not improve to

another constraint.

 In this way, although we avoid a jumping error, there

is still another difficulty. Because we force it to stay on a

specific constraint, essentially its improvement may

sometimes be interrupted. Hence, in this design, the solutions

we found are restricted and may conflict with other

constraints which means the solution is infeasible.

 Thereafter, we added a second condition to the

program. When the value of the subproblem is consequently

improving, the variables can fit all the constraints and the

direction approaches zero, then the program terminates. By

this setting we can find the feasible solution which is close

to stationary point. Therefore, we can temporarily apply this

algorithm to estimate the speed of SQP_PSO and parallel it.

However, we don’t completely approve of this modus

operando, so in the future, we will keep ameliorating this

algorithm.

4. EXPERIMENT

 We divided our experiments into two parts. The first

part is to test the sequential algorithm on a single memory

system. The sequential algorithms include the serial PSO and

the serial SQP_PSO. We generated two problems, one of the

optimization problems is set to be a two dimensional problem,

i.e. optimization problems with two decision variables.

Another one is set to be a three dimensional problem, i.e.

optimization problems with three decision variables. Each

synthetic problem contains either one hundred constraints or

three hundred constraints. The environment we prepared for

testing the runtime and object value is as follows:

 O.S. Windows 10

 CPU Intel core i5-2450M 2.50GHz

 RAM 12GB

The second part is to test the parallel algorithm in

multiple clusters system. The parallel algorithm contains

parallel PSO and parallel SQP_PSO. The testing

optimization problems and the working environment are the

same with the setting for the sequential algorithm.

 After these two experiments were done and repeated

10 times. We can use the average data to analyze four issues

as follows:

1. Dimension affects solver

2. Constraints amount affects solver speed

3. Accuracy of new algorithm

4. Efficiency of parallelism

Finally, with all numerical data results, we can conclude

the evaluation, applications and the improvement methods in

the following section.

 From the experiment, we obtain sets of data for

discussion to consider whether the algorithm we developed

is acceptable or not. In the following subsections, we analyze

the performance of parallel PSO and SQP_PSO. This

research will compare the accuracy of objective values in

different solvers and possible improvements.

4.1 Results for Parallel PSO

 As we mentioned in section 2, PSO is a powerful

stochastic performing-optimization technique. However, as

the amount of the constraints increase, the efforts of checking

the feasibility of the solution at the current iteration also

increases. Hence, the runtime of PSO gets significantly

slower. In Figure 5 and Figure 6, we present the runtime of

serial PSO and parallel PSO in each dimension of variables

with different quantities of constraints. According to Figure

5 and Figure 6, we can observe that, the runtime of parallel

PSO decreases along with the increase of the number of

processors.

 Table 1 contains the average value of all the data we

obtained from the experiments. We use the speedup (see as

Figure 5: The runtime of PSO and SQP_PSO in different problem

Figure 6, The runtime of different problems for PSO in

multiple processors

formula 4) and the efficiency (see as formula 6) to evaluate the

merit of parallelism. According to Table 1, when we increase

the amount of processors, the efficiency also gets higher, and

the speedup almost equals P-1. Therefore, the efficiency

estimation of parallel PSO in multiple processors will be

similar to the formula (7). In formula (7), if the number of

processors increase infinitely, the efficiency will almost equal

to one. By this result, we are aware that the parallelism

proportion in parallel PSO is high, and can be one of the

reasons to utilize parallel PSO as subproblem’s solver.

 E =
𝑃−1

𝑃
 (7)

 The second reason for utilizing parallel PSO in this

research as the main solver to solve subproblem in SQP is

because according to the previous research, the runtime of PSO

will be influenced by the amount of constraints. It has better

performance in fewer constraints problems. Moreover, in our

SQP subproblem, it only needs to solve problems with one

constraint. So we consider parallel PSO to be a good choice.

4.2 Results for Parallel SQP_PSO

 The main parallelism part for SQP_PSO in this research

is to find the constraint with maximum value at a certain

solution. Based on the high speed calculation, if the amount of

constraints is not numerous, it won’t influence the runtime of

SQP too much, which can be observed from Figure 7 and Table

2. In Figure 7 and Table 2, the broken line of SQP_PSO and

the runtime changes little. By this result, we can forecast that

in the future work, parallel SQP_PSO has potential in solving

large scale problems.

4.3 Speedup and Efficiency

 We set the processor zero as the master processor to

control the global information update in PSO. The swarms

can’t assign to master processor. Thus, only P-1 processors

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

s)

PSO

SQP+PSO

2 Dimensions
100constrains

2 Dimensions
300constrains

3 Dimensions
100constrains

3 Dimensions
300constrains

0

5

10

15

20

25

30

35

40

PSO Par_PSO_3 Par_PSO_4 Par_PSO_5

2 D
im

en
sio

n
s

100 C
o

n
strain

s

0

50

100

150

2 D
im

en
sio

n
s

300 C
o

n
strain

s
0

50

100

150

3 D
im

en
sio

n
s

100 C
o

n
strain

s

0

50

100

150

200

250

300

350

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

3 D
im

en
sio

n
s

300 C
o

n
strain

s

time(sec)

participate particles division. However; when calculating

efficiency, the speedup still needs to be divided by P processors.

Therefore, even though the speedup is pretty close to P-1, as

formula (7) represents, it still causes bad performance in the

efficiency when the amount of processors isn’t large enough.

According to Table 2, the efficiency becomes larger

when the amount of processors increases. Depending on the

growing trend, we assume the efficiency will still keep

growing. Hereby, we can assume SQP_PSO algorithm and

parallel SQP_PSO will be valuable in future work.

Figure 7, The runtime of different problems for SQP_PSO in

multiple processors

4.4 Objective Value

 The information of the objective values is tabulated in

Table 1 and Table 2. By Table 1 and Table 2, we can discover

that in two dimensions’ problem, there’s no difference between

PSO and SQP_PSO in the objective values issue. However, in

three dimensions’ problem, PSO is more precise than the

values found by SQP_PSO. It may be caused by two factors.

First, as we mentioned in section 3, to avoid jumping problem,

we lock the constraint when the objective value seems to

converge. Second, we relax the stop criteria to make sure that

Table 1: Result of PSO and parallel PSO experiment

 PSO par_PSO_3 par_PSO_4 par_PSO_5

2D-100(sec) 33.76 17.43 11.75 8.87

Speedup NA 1.94 2.87 3.81

Efficiency NA 0.65 0.72 0.76

Obj_value 0.20 0.20 0.20 0.20

2D-300(sec) 101.51 51.36 34.44 25.84

Speedup NA 1.98 2.95 3.93

Efficiency NA 0.66 0.74 0.79

Obj_value 0.20 0.20 0.20 0.20

3D-100(sec) 98.90 49.91 33.50 25.27

Speedup NA 1.98 2.95 3.91

Efficiency NA 0.66 0.74 0.78

Obj_value 0.12 0.12 0.12 0.12

3D-300(sec) 291.90 146.43 97.77 73.55

Speedup NA 1.99 2.99 3.97

Efficiency NA 0.66 0.75 0.79

Obj_value 0.11 0.11 0.11 0.11

Table 2: Result of SQP and parallel SQP experiment

 SQP par_SQP_3 par_SQP_4 par_SQP_5

2D-100(sec) 4.54 2.20 1.48 1.12

Speedup NA 2.06 3.07 4.05

Efficiency NA 0.69 0.77 0.81

Obj_value 0.20 0.20 0.20 0.20

2D-300(sec) 4.65 2.25 1.52 1.14

Speedup NA 2.07 3.06 4.08

Efficiency NA 0.69 0.76 0.82

Obj_value 0.20 0.20 0.20 0.20

3D-100(sec) 5.50 2.67 1.79 1.35

Speedup NA 2.06 3.07 4.07

Efficiency NA 0.69 0.77 0.81

Obj_value 0.13 0.12 0.12 0.12

3D-300(sec) 5.32 2.58 1.73 1.31

Speedup NA 2.06 3.08 4.06

Efficiency NA 0.69 0.77 0.81

Obj_value 0.12 0.11 0.12 0.11

0

1

2

3

4

5

6

7

SQP_PSO Par_SQP_3 Par_SQP_4 Par_SQP_5

2
 D

im
en

sio
n

s
1

0
0

 C
o

n
strain

s

0

2

4

6

8

2 D
im

en
sio

n
s

300 C
o

n
strain

s

0

2

4

6

8

10

3 D
im

en
sio

n
s

100 C
o

n
strain

s

0

2

4

6

8

10

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
3 D

im
en

sio
n

s
300 C

o
n

strain
s

time(sec)

the program can output the value successfully. Above all, the

objective value we obtain from SQP_PSO is not exact. It’s an

approximation value which is in the feasible region and is close

to stationary point.

 The implements we used in program to solve jumping

error still need to be considered. We tend to improve it until it

can converge on the exact local minimum or the direction

should be equaled zero. Therefore, we are trying other methods

to solve it. So far, we assume the possible reason of jumping

error may be caused by step size. In the future research, we

want to import Armijo rule or minimizing rule instead of

constant step size and expect that the jumping error can be

solved.

5. CONCLUSION

Based on the result we obtained from the numerous

experiments; we can easily see that this algorithm is valuable

for large scale problems. Therefore, we tend to apply this

algorithm in three ways. The first way is to solve some big

problems, which the amount of variables and constraints can’t

be afforded by one single memory system. In this kind of

problem, we can’t just use powerful commercial software such

as Knitro to deal with it. The second way is to use this to solve

global optimization problem. After all, apart from proving the

property, the way to find out the global solution usually

requires exhaustive searching. This type of work takes too

much time, so we think the algorithm we propose can aid it.

Third, the most important of all, the context of algorithm still

includes some bugs, and the property needs to be stated clearly.

Hereby, in the future we expect we can discover the solution of

the system bugs, and prove the property, convergence or

efficiency of it.

6. REFERENCE

Bertsekas, D. P. (2016). Nonlinear Programming 3rd Edition.

Athena Scientific.

Chang, J. F., Chu, S. C., Roddick, J. F., Pan, J. S. (2005).

Parallel Particle Swarm Optimization Algorithm with

Communication Strategies. Journal of Information

Science and Engineering (21), pp. 809-818.

Dixon, L. C. W., Jha, M. (1993). Parallel algorithms for

global optimization. Journal of Optimization Theory and

Applications, 79(2), pp. 385-395.

Kang, S. J., Lee, S. Y., Lee, K. M. (2015). Performance

Comparison of OpenMP, MPI, and MapReduce in

Practical Problems. Advances in Multimedia, pp. 1-9.

Pacheco, P. (2011). An Introduction to Parallel Programming.

Morgan Kaufmann.

Parsopoulos, K. E., Vrahatis, M. N. (2002). Particle Swarm

Optimization Method for Constrained Optimization

Problems. Greece: Department of Mathematics,

University of Patras Articial Intelligence Research Center.

