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Abstract.  The optimization technique has been developed in several ways, but as the amount of data increase, 

the optimization solvers’ speed has become an important issue. Therefore, in this paper we first evaluate the role 

of probabilistic methods and SQP in the solution technique of optimization problems, then we apply SQP as the 

main solver to solve constraint optimization problems. To build the solver program, we take python as the major 

language and use the message passing interface (MPI) library to parallel the original sequential algorithm. In order 

to measure the speedup after parallelism, this research will implement both the sequential algorithm and the 

parallel algorithm in multiple clusters system and then conclude the efficiency of parallel computing in solving 

the large scale problems. 
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1. INTRODUCTION 
 

Solving optimization problem is one of the core 

technologies in the modern industries where the operations 

research methods are utilized and in artificial intelligence 

where the machine learning techniques, e.g., pattern 

recognition and prediction, are employed. As the 

mechanisms people wish to formulate become more 

sophisticated than ever, the required size of variables and 

constraints in the mathematical programming formulation 

for a real system have enlarged significantly. Generally 

speaking, there are two directions of the algorithmic 

development for solving the large-scale optimization 

problems. The first direction focuses on the improvement of 

the serial algorithms running on a single machine which 

ideally is a high-performance computer, whereas the second 

direction focuses on the development of the distributed 

(parallel) algorithms performing subroutines on a cluster of 

the computers. In this work, we study an algorithm from the 

perspective of the second path for solving the nonlinear 

constrained optimization problems.  

We propose a parallel scheme for the popular nonlinear 

constrained optimization algorithm known as the Sequential 

Quadratic Programming (SQP henceforth). It is widely 

recognized that the improvement of runtime of a distributed 

optimization algorithm compared with its serial counterpart 

is restricted. It is because of the excessive demand of 

information passage arising from stationarity verification, 

feasibility confirmation, and improvement computation (in 

terms of a search direction) in any convergent optimization 

algorithms including SQP. On the other hand, performing-

optimization algorithms include heuristics and meta-

heuristics (without convergence result) can be greatly 

parallelized and the implementation of parallelism is 

relatively simple. Motivated by this, we adapted a meta-

heuristics known as the Particle Swarm Optimization (PSO 

henceforth) to the distributed computing environment and 

embedded the parallel PSO in the SQP method. 

    The implementation of the proposed parallel 

algorithm is done in MPI. This algorithm is compared with 

(i) the serial PSO, (ii) serial SQP and PSO combination, and 

(iii) parallel PSO, based on three quantities (speedup, 

efficiency, and accuracy.) In the scope of this paper, the 

numerical result is primarily obtained from the small-size 

instances. The experiment results show that the parallel SQP 

and PSO combination performs well in both the speedup and 
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the efficiency. These results act as evidence showing that the 

proposed design has potential in solving large-scale 

optimization problems in parallel while the convergence to 

stationarity remains. 

 

1.1 Sequential Quadratic Programming 
 

Sequential quadratic programming is an optimization 

technique for solving nonlinear programming. Consider a 

minimization problem of the form minx { f(x) | g1(x),…,gj(x) 
≤ 0}. The SQP method translates the original problems into 

exact penalty problems as follows: 

 

min
x

𝑓(𝑥) + 𝑐𝑃(𝑥) 

          𝑃(𝑥) = max  {𝑔𝑖(𝑥) … 𝑔𝑗(𝑥)}       (1) 

  

Then, we switch to solve the necessary condition of (1). 

The condition is formed as a subproblem at an x as in below: 

min
d

∇𝑓(𝑥)′𝑑 +
1

2
𝑑′𝐻𝑑 

            s. t  𝑔(𝑥) + ∇𝑔(𝑥)′𝑑 ≤ 0           (2) 

 

In this subproblem, we solve for the best improvement 

direction instead of solving for the variables x. After the 

improvement direction is found, we can judge whether the x 

vector is a stationary point or not. If the direction doesn’t 

equal zero, it means that the solution of the variables x still 

needs to be updated. The next point will be updated by the 

current point and the computed direction d. Conversely, if 

the direction equals zero, it represents that the current point 

is a stationary point and may be the solution of the original 

problem (Bertsekas, 2016). 

Every time before we solve program (2), we need to 

calculate the values of all the constraints at the certain 

solution, and then pick the constraint with maximum value 

as max constraint P(x) to form the subproblem (2). If the 

amount of constraints is huge, the computers will take a lot 

of time to calculate the maximum value of each constraint. 

Hence, we consider dividing the constraints into different 

processors and calculating them synchronously. 

 

1.2 Parallel Computing Frameworks 
 

To parallel the original algorithm, there are a lot of tools 

that can be utilized, for instance, OpenMP and MPI. OpenMP 

is usually employed in a shared memory system, and in such 

a system, most variables are open variables. Thus, different 

threads can share the variable immediately and can calculate 

data quickly (Kang et al, 2015).  

MPI is usually used in multiple clusters system, but it 

can also be implemented in a single memory system. The 

delivery medium of MPI is the high speed internet. Even 

though MPI is fast in running speed, it is generally not faster 

than OpenMP. 

 Compared with OpenMP and MPI in the normal-size 

problems, which can be afforded in a single memory system, 

OpenMP is the best tool because its speed is three times faster 

than MPI. However, if the size of the problem is so large that 

one computer can’t handle, MPI is the only option. In our 

other research, we face a problem which can’t be afforded in 

a single memory system. Thus, we tend to apply MPI as our 

main tool. 

 

1.3 Measures for Parallel Computing Performance 
 

 The most important aspects of parallel computing are 

the speedup and the efficiency. The benchmark for the 

runtime of a parallel computing procedure is that follows the 

Amdahl’s law, which is shown below: 

            𝑇𝑃 =
𝑎𝑇𝑆

𝑃
+ (1 − 𝑎)𝑇𝑆            (3) 

TP represents the runtime of the parallel algorithm. TS 

represents the runtime of the sequential algorithm and  𝑎 

here represents the proportion of parallelism. The formula (3) 

indicates that the runtime of parallel program should 

approach the parallelism proportion of sequential algorithm, 

which pulps the number of processors P and then adds non-

parallelism proportion of sequential algorithm time. 

The speedup of parallelism can be evaluated by the 

following formula: 

            𝑆 =
𝑇𝑠

𝑇𝑃
                          (4) 

We hope that the speedup S can be almost equal to the 

total number of processors P, but it’s very difficult to achieve 

for two main reasons.  

First, parallel computing has a limit. According to 

formula (3) and formula (4), if we keep increasing processors 

as computing node into clusters system, we can get a formula 

as follows: 

            lim
𝑃→∞

𝑆 =
𝑇𝑠

 
𝑎𝑇𝑠

𝑃
+(1−𝑎)𝑇𝑠

             (5) 

Most parallel algorithms take ninety percent as a high 

level of parallelism. Based on formula (5), the speedup limit 

will be equal to the reciprocal of non-parallelism proportion. 

Therefore, the limit of the speedup is difficult to be over ten 

times. It means that attaining a higher proportion of 

parallelism is an important issue in parallel computing.  

Second, in parallel computing, we sometimes need a 

master computer as a center node which is responsible for 

integrating the whole numerical result. In such a structure, 



the limit of speedup S will be P-1, and thus it is impossible 

to have the speedup equal to the number of processors P. 

Therefore, we use formula (6), which represents the 

acceleration per processor, to evaluate the parallelism,  

            𝐸 =
𝑆

𝑃
                        (6) 

Above all, we comprehended the factors affecting the 

parallel efficiency. The major factor is the parallelism 

proportion. In the light of our preliminary experiment results, 

the most convenient way to parallel over ninety percent is to 

partition the data. If the amount of data can be partitioned 

into P parts and be respectively assigned to different 

processors, then the load of each processor can be thus 

reduced to 1/P. Among the parallel nonlinear programing 

solvers, the probabilistic methods can especially perform 

such a partition (Dixon and Jha ,1993). For instance, 

multistart method can respectively start from several points 

by different processors and find local minimum 

asynchronously to reach its stop criteria. Particle swarm 

optimization can divide the swarms into several processors 

uniformly, each processor is in charge of its own part. Thus, 

the load of each processor decreases significantly. (Chang et 

al, 2005).  

Multistart is generally used to find the global solution. 

However, PSO can be implemented to find both the local 

solution and the global solution based on the parameter it is 

set. Hence, we consider PSO to be more flexible and more 

suitable to be combined with SQP to develop a new 

algorithm (SQP_PSO henceforth), and parallel it to test the 

value of the new parallel algorithm. 

 
2. METHOD: SQP_PSO Combination 

 The parallel algorithm of PSO was published in the last 

few years. According to previous research, we consider PSO 

to be valuable in parallel computing. However, when we 

tried to apply PSO as the main parallel algorithm, we 

discovered some disappointing issues. In constrained 

problems, the particles need to test whether they are in the 

feasible region or not. Hereby, when the constraints increase, 

the running times for checking the feasibility for every 

constraint also increase. It thus takes much time. 

 For this reason, we considered importing SQP method, 

which performs exact penalty function and can remove 

redundant constraints temporarily. After removing 

constraints, we assume PSO can be used as the main solver 

of subproblem in effect (Parsopoulos and Vrahatis, 2002). 

After the model of SQP_PSO is built preliminarily, we 

divide the work of calculating the maximum values of 

constraints into several processors. Each processor will 

handle equal amounts of constraints. After all the processors 

have completed their work, the multiple clusters system will 

return the data we want by the function we use. MPI_Send is 

a point-to–point function, it may cause critical section when 

all the slave processors send the maximum value 

synchronously. However, MPI_Reduce is a collective 

communication function which can avoid critical section. 

Hence, we tend to apply function MPI_Reduce to obtain the 

constraint with max value instead of MPI_Send (P. Pacheco, 

2011). The idea of this communication can be comprehended 

by Figure 1. 

 

Figure 1. The model of parallel SQP 

 

In Figure 1, different colors represent different 

constraints, and all the constraints are imported into each 

processor automatically. After calculating the values of the 

constraints, all the processors reduce the value we want into 

the processor zero. The processor zero then soon broadcast 

the constraint with maximum value into all the slave 

computers by function MPI_Bcast and the subproblem will 

be built in each processor. 

The approximate runtime in PSO is influenced by the 

amount of particles and the iteration times. To maintain the 

accuracy of PSO, we can’t decrease the amount of particles 

and the iteration times below a certain level. We thus decided 

to divide particles into P-1 parts, and assign them into P-1 

processors. If the calculation data has been divided first, the 

workload in each processor can be reduced significantly. 



Figure 2 represents the above opinion 

In Figure 2, particles are assigned equally into P-1 slave 

processors. When all particles start to move, the direction and 

velocity are dependent upon its inertia, self-experiment and 

global experiment. Therefore, every time when the best 

solution in each processor is produced, the slave processors 

need to send the position and related information of the best 

solution to the master computer. The master computer then 

integrates the particles information it receives, and sends the 

best solution to all slave processors after arrangement.  

 

Figure 2. The model of parallel PSO 

 

 With Figure 1 and Figure 2, we can combine parallel 

SQP and parallel PSO. Figure 3 is the combination of it. In 

Figure 3, we set the processors zero as the master computer 

to monitor the process of PSO. After the subproblem is 

solved, if the variables of the original problem still need to 

be modified, the master computer will broadcast the solution 

information to all the processors including itself. Then, all 

the processors update the numerical data and recalculate the 

value of each constraint to build a new subproblem until the 

stationary point is obtained.  

We switch the role of the processors zero because there 

is no need to monitor the SQP part. To change the processor 

zero’s role here can increase the number of computation 

nodes, it thus becomes more valuable. 

We write all the work in the same program, thus all the 

processors can run the same program in parallel. Figure 4 is 

the main algorithm of it. Before starting to run, all the 

processors will be assigned a rank. Rank zero represents the 

master computer, if the rank is greater than zero represents 

that it’s a slave computer.  

 

 

Figure 3. The model of parallel SQP and parallel PSO 

 

 

   

Figure 4. The algorithm of parallel SQP and parallel PSO 

 



3. IMPLEMENTATION 
 

 After finishing building the model of the new 

algorithm, we start to program. However, we encountered 

some problems which needed to be studied and researched 

for a while.   

 

3.1 Computation Error 
 

 There exists a floating point calculation error in 

machine language, especially in different languages. We 

tried to program the sequential program in two languages, 

such as MATLAB and Python. In both languages, the 

direction we obtained from the subproblem can’t equal zero. 

The reason for this is possibly a floating point error. 

Therefore, if we set stop criteria as direction should equal 

zero then break the loop, the iteration will not stop but keep 

calculating. This error (jumping problem thereafter) usually 

causes the solution of variables to be over improved and 

repeat calculating subproblem instead of falling into a 

stationary point.  

 In MATLAB we define the sum of the square of all 

directions as error. If the error is less than 10−4, then the 

program terminates. After this revision, the jumping problem 

which was caused by a floating point error can be solved and 

the objective value can also be converged to local minimum 

smoothly. 

In Python, we also define the sum of the square of all 

direction as error, and set the error as the stop criteria. 

However, the jumping problem still exists. We thus decide to 

focus on the direction. If the direction continues to decrease 

and the objective value is approaching a better value, we tend 

to judge that it’s going to arrive at a stationary point, then we 

force it to stay on the same constraint and do not improve to 

another constraint. 

 In this way, although we avoid a jumping error, there 

is still another difficulty. Because we force it to stay on a 

specific constraint, essentially its improvement may 

sometimes be interrupted. Hence, in this design, the solutions 

we found are restricted and may conflict with other 

constraints which means the solution is infeasible. 

 Thereafter, we added a second condition to the 

program. When the value of the subproblem is consequently 

improving, the variables can fit all the constraints and the 

direction approaches zero, then the program terminates. By 

this setting we can find the feasible solution which is close 

to stationary point. Therefore, we can temporarily apply this 

algorithm to estimate the speed of SQP_PSO and parallel it. 

However, we don’t completely approve of this modus 

operando, so in the future, we will keep ameliorating this 

algorithm.  

 

4. EXPERIMENT 
  

 We divided our experiments into two parts. The first 

part is to test the sequential algorithm on a single memory 

system. The sequential algorithms include the serial PSO and 

the serial SQP_PSO. We generated two problems, one of the 

optimization problems is set to be a two dimensional problem, 

i.e. optimization problems with two decision variables. 

Another one is set to be a three dimensional problem, i.e. 

optimization problems with three decision variables. Each 

synthetic problem contains either one hundred constraints or 

three hundred constraints. The environment we prepared for 

testing the runtime and object value is as follows: 

 O.S. Windows 10 

 CPU Intel core i5-2450M 2.50GHz 

 RAM 12GB 

The second part is to test the parallel algorithm in 

multiple clusters system. The parallel algorithm contains 

parallel PSO and parallel SQP_PSO. The testing 

optimization problems and the working environment are the 

same with the setting for the sequential algorithm.  

 After these two experiments were done and repeated 

10 times. We can use the average data to analyze four issues 

as follows: 

1. Dimension affects solver 

2. Constraints amount affects solver speed 

3. Accuracy of new algorithm 

4. Efficiency of parallelism 

Finally, with all numerical data results, we can conclude 

the evaluation, applications and the improvement methods in 

the following section. 

 From the experiment, we obtain sets of data for 

discussion to consider whether the algorithm we developed 

is acceptable or not. In the following subsections, we analyze 

the performance of parallel PSO and SQP_PSO. This 

research will compare the accuracy of objective values in 

different solvers and possible improvements. 

 
4.1 Results for Parallel PSO 
 

 As we mentioned in section 2, PSO is a powerful 

stochastic performing-optimization technique. However, as 

the amount of the constraints increase, the efforts of checking 

the feasibility of the solution at the current iteration also 

increases. Hence, the runtime of PSO gets significantly 

slower. In Figure 5 and Figure 6, we present the runtime of 

serial PSO and parallel PSO in each dimension of variables 

with different quantities of constraints. According to Figure 

5 and Figure 6, we can observe that, the runtime of parallel 

PSO decreases along with the increase of the number of 

processors. 

 Table 1 contains the average value of all the data we 

obtained from the experiments. We use the speedup (see as  



 

Figure 5: The runtime of PSO and SQP_PSO in different problem

 

Figure 6, The runtime of different problems for PSO in 

multiple processors 

 

formula 4) and the efficiency (see as formula 6) to evaluate the 

merit of parallelism. According to Table 1, when we increase 

the amount of processors, the efficiency also gets higher, and 

the speedup almost equals P-1. Therefore, the efficiency 

estimation of parallel PSO in multiple processors will be 

similar to the formula (7). In formula (7), if the number of 

processors increase infinitely, the efficiency will almost equal 

to one. By this result, we are aware that the parallelism 

proportion in parallel PSO is high, and can be one of the 

reasons to utilize parallel PSO as subproblem’s solver. 

              E =
𝑃−1

𝑃
                         (7) 

 The second reason for utilizing parallel PSO in this 

research as the main solver to solve subproblem in SQP is 

because according to the previous research, the runtime of PSO 

will be influenced by the amount of constraints. It has better 

performance in fewer constraints problems. Moreover, in our 

SQP subproblem, it only needs to solve problems with one 

constraint. So we consider parallel PSO to be a good choice.

  

 
4.2 Results for Parallel SQP_PSO 
 

 The main parallelism part for SQP_PSO in this research 

is to find the constraint with maximum value at a certain 

solution. Based on the high speed calculation, if the amount of 

constraints is not numerous, it won’t influence the runtime of 

SQP too much, which can be observed from Figure 7 and Table 

2. In Figure 7 and Table 2, the broken line of SQP_PSO and 

the runtime changes little. By this result, we can forecast that 

in the future work, parallel SQP_PSO has potential in solving 

large scale problems. 

 

4.3 Speedup and Efficiency 
 
 We set the processor zero as the master processor to 

control the global information update in PSO. The swarms 

can’t assign to master processor. Thus, only P-1 processors 
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participate particles division. However; when calculating 

efficiency, the speedup still needs to be divided by P processors. 

Therefore, even though the speedup is pretty close to P-1, as 

formula (7) represents, it still causes bad performance in the 

efficiency when the amount of processors isn’t large enough.  

According to Table 2, the efficiency becomes larger 

when the amount of processors increases. Depending on the 

growing trend, we assume the efficiency will still keep 

growing. Hereby, we can assume SQP_PSO algorithm and 

parallel SQP_PSO will be valuable in future work. 

 

 
Figure 7, The runtime of different problems for SQP_PSO in 

multiple processors 

 
4.4 Objective Value 
 
 The information of the objective values is tabulated in 

Table 1 and Table 2. By Table 1 and Table 2, we can discover 

that in two dimensions’ problem, there’s no difference between 

PSO and SQP_PSO in the objective values issue. However, in 

three dimensions’ problem, PSO is more precise than the 

values found by SQP_PSO. It may be caused by two factors. 

First, as we mentioned in section 3, to avoid jumping problem, 

we lock the constraint when the objective value seems to 

converge. Second, we relax the stop criteria to make sure that  

Table 1: Result of PSO and parallel PSO experiment 

 PSO par_PSO_3 par_PSO_4 par_PSO_5 

2D-100(sec) 33.76  17.43  11.75  8.87  

Speedup NA 1.94  2.87  3.81  

Efficiency NA 0.65  0.72  0.76  

Obj_value 0.20  0.20  0.20  0.20  

2D-300(sec) 101.51  51.36  34.44  25.84  

Speedup NA 1.98  2.95  3.93  

Efficiency NA 0.66  0.74  0.79  

Obj_value 0.20  0.20  0.20  0.20  

3D-100(sec) 98.90  49.91  33.50  25.27  

Speedup NA 1.98  2.95  3.91  

Efficiency NA 0.66  0.74  0.78  

Obj_value 0.12  0.12  0.12  0.12  

3D-300(sec) 291.90  146.43  97.77  73.55  

Speedup NA 1.99  2.99  3.97  

Efficiency NA 0.66  0.75  0.79  

Obj_value 0.11  0.11  0.11  0.11  

 

Table 2: Result of SQP and parallel SQP experiment 

 SQP par_SQP_3 par_SQP_4 par_SQP_5 

2D-100(sec) 4.54  2.20  1.48  1.12  

Speedup NA 2.06  3.07  4.05  

Efficiency NA 0.69  0.77  0.81  

Obj_value 0.20  0.20  0.20  0.20  

2D-300(sec) 4.65  2.25  1.52  1.14  

Speedup NA 2.07  3.06  4.08  

Efficiency NA 0.69  0.76  0.82  

Obj_value 0.20  0.20  0.20  0.20  

3D-100(sec) 5.50  2.67  1.79  1.35  

Speedup NA 2.06  3.07  4.07  

Efficiency NA 0.69  0.77  0.81  

Obj_value 0.13  0.12  0.12  0.12  

3D-300(sec) 5.32  2.58  1.73  1.31  

Speedup NA 2.06  3.08  4.06  

Efficiency NA 0.69  0.77  0.81  

Obj_value 0.12  0.11  0.12  0.11  
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the program can output the value successfully. Above all, the 

objective value we obtain from SQP_PSO is not exact. It’s an 

approximation value which is in the feasible region and is close 

to stationary point. 

 The implements we used in program to solve jumping 

error still need to be considered. We tend to improve it until it 

can converge on the exact local minimum or the direction 

should be equaled zero. Therefore, we are trying other methods 

to solve it. So far, we assume the possible reason of jumping 

error may be caused by step size. In the future research, we 

want to import Armijo rule or minimizing rule instead of 

constant step size and expect that the jumping error can be 

solved. 

 

5. CONCLUSION 
 

Based on the result we obtained from the numerous 

experiments; we can easily see that this algorithm is valuable 

for large scale problems. Therefore, we tend to apply this 

algorithm in three ways. The first way is to solve some big 

problems, which the amount of variables and constraints can’t 

be afforded by one single memory system. In this kind of 

problem, we can’t just use powerful commercial software such 

as Knitro to deal with it. The second way is to use this to solve 

global optimization problem. After all, apart from proving the 

property, the way to find out the global solution usually 

requires exhaustive searching. This type of work takes too 

much time, so we think the algorithm we propose can aid it. 

Third, the most important of all, the context of algorithm still 

includes some bugs, and the property needs to be stated clearly. 

Hereby, in the future we expect we can discover the solution of 

the system bugs, and prove the property, convergence or 

efficiency of it. 
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