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Abstract. University course timetabling problem is always a challenge for researcher due to the inherent complexity and 

variability of the problem. In this paper, two objectives were considered while optimizing the real course timetabling at the 

International University were considered, including i) the maximization the number of courses assigned and ii) the minimization 

timetable compactness. The Mixed Integer Programming (MIP) was employed for formulating and solving individual 

optimization problem. To deal with multiple objectives, Goal Programming (GP) approach was utilized to achieve the best 

compromised solutions. The solutions were obtained by using optimization software CPLEX. Computational results revealed that 

this approach yields better schedules in terms of timetable compactness as compared to the currently existing approach. 
Key words: University course timetabling, Mixed integer programming, Multi-objective optimization, Goal programming, 

Timetable compactness. 
 

1. INTRODUCTION 
 

In recent years, the development of society has led to 

the blooming expansion of universities. As such, the 

number of student enrollment and courses has been 

increased dramatically. In order to maintain the quality of 

education, each university itself is enforced to deliver good 

timetables for students and teachers. To have an efficient 

timetable, each educational institution has to make the 

arrangement of limited resources of teachers and 

classrooms for scheduling a reasonable timetable. 

Timetabling problem has proved its attraction to a huge of 

researchers not only in the past, but also in the time being 

because this problem is in class of NP-hard problem. That 

is to say, finding an optimum solution gets more and more 

difficult as the model expands in terms of size as well as 

specialized requirements from each educational institution. 

“Timetabling represents the most important planning 

exercise in the school calendar. It not only gives practical 

expression to the curricular philosophy of the school, it sets, 

maintains and regulates the teaching and learning pulse of the 

school and ensures the delivery of quality education for all 

students” Jardine (2006). 

From what educators defined timetabling term, 

timetabling plays the extreme important role for educational 

institution. 

Wren (2005) has defined timetabling as follows: 

‘‘Timetabling is the allocation, subject to constraints, of given 

resources to objects being placed in space time, in such a way 

as to satisfy as nearly as possible a set of desirable 

objectives.’’ 

According to Edmund Kieran Burke (2002), university 

timetabling problem is decomposed into two main categories: 

course timetabling and exam timetabling. These problems are 
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subject to some constraints which are usually categorized to 

two types: hard constraints and soft constraints Burke (1997). 

Hard constraints are constraints that must be satisfied under 

any circumstances while soft constraints are those can be 

violated but the violations may affect the quality of teaching 

Shao-wen (2014). 

In order to solve the university timetabling problem, 

there are a lot of approaches used by research works. 

According to the researchers, the approaches are classified 

into some categories as follows:  

1. Integer Programming 

2. Constraints Satisfaction Programming 

3. Genetic Algorithms 

4. Tabu search 

Integer Linear Programming: Linear programming is 

a mathematical programming technique to solve optimization 

problems. A linear programming problem is a mathematical 

formulation of an optimization problem defined in terms of 

an objective function and a set of constraints. The objective 

function is a linear function of the unknowns (variables) and 

the set of constraints consists of linear equalities and linear 

inequalities. Integer linear programming (ILP) or simply 

integer programming (IP) is a subset of linear programming, 

where some or all of the variables are restricted to take only 

integer or whole number (as opposed to fractional) values. If 

all the variables are restricted to take only integer variables, 

the problem is called pure integer linear programming 

problem. If the restrictions are such that, some but not all of 

the variables can take only integer values, then such a 

problem is said to be mixed integer linear programming 

problem. If the variables may take either 0 or 1, then such a 

problem is called binary integer linear programming problem 

Hillier (2010). 

Daskalaki et al. (2004) suggested a novel integer 

programming to model the timetabling problem. With the 

very large number of possible variables such as groups of 

students, teachers, courses, classrooms, they proposed 0-1 

binary variables to bring great flexibility in the modeling 

process by reducing the large number of variables to 

manageable sizes. By minimizing the cost function, the 

model then is solved by commercial software using branch-

and-bound approach. 

Skocdopolova (2012) proposed integer goal 

programming to solve the real timetabling problem at 

department of econometrics at University of Economics, 

Prague. A sequential three-stage goal programming model is 

introduced. This approach involves three stages. At each stage, 

the optimal values are used as inputs for the next stage.   At 

first teachers are assigned to courses, then courses are 

assigned to time slots, and finally time slots are assigned to 

classrooms.  

Mixed integer programming (MIP): A mixed-integer 

programming (MIP) problem is one where some of 

the decision variables are constrained to be integer values (i.e. 

whole numbers such as -1, 0, 1, 2, etc.) at the optimal 

solution.  

The "classic" method for solving these problems is 

called Branch and Bound.  This method begins by finding 

the optimal solution to the "relaxation" of the problem 

without the integer constraints (via standard linear or 

nonlinear optimization methods). If in this solution, the 

decision variables with integer constraints have integer values, 

then no further work is required.  If one or more integer 

variables have non-integral solutions, the Branch and Bound 

method chooses one such variable and "branches," creating 

two new sub problems where the value of that variable is 

more tightly constrained.  These sub problems are solved and 

the process is repeated, until a solution that satisfies all of the 

integer constraints is found. 

To be specific, Aizam (2012) presented Mixed Integer 

Linear Programming (MLIP) models which incorporate all 

hard constraints and the desirable soft constraints. 

Interestingly, the university timetabling problem has been 

decomposed into three sub models for different purposes. 

First, the first model solves hard constraints, then the second 

model solves the soft constraints. The last one is the 

combination of the first and the second models to be solved. 

The computational results proved that MLIP is capable of 

generating university course timetabling. 

The tabu search: The tabu search is a metaheuristic 

originally introduced by Glover (1990). Starting from a 

candidate solution (also known as a potential solution), the 

tabu search is a local search algorithm that moves from one 

candidate solution to another candidate solution (referred to 

as a neighbor) until some problem dependent termination 

criteria has been met.  

Moving from a candidate solution to a neighbor is 

accomplished using a move operator, where a single change 

is made to the candidate solution resulting in its neighbor. A 

neighborhood is defined as a set of neighbors that occur as a 

result of implementing a single move to a candidate solution. 

In order to prevent the search from cycling (returning to a 

previously encountered area of the search space), a tabu list is 

kept. This tabu list stores a set of k recent candidate solutions. 

Alternatively, previous moves that have been applied to 

candidate solutions can also be stored in the tabu list Schaerf 

(1996).  

A move is rejected if it results in a candidate solution 

that is in the tabu list. Another move must then be made. An 

advantage of the tabu search is its use of the tabu list. This list 

resembles a form of memory, preventing the search algorithm 

from returning to previous candidate solutions. A 

disadvantage of the tabu search is that the focus is always on 

a single candidate solution. Thus, the possibility arises that a 

large area of the search space is not covered Sastrodjojo 

(1998).  



 

 

 

Zhipeng L üa (2001) presents an Adaptive Tabu Search 

algorithm for solving the problem of curriculum-based course 

timetabling. The proposed algorithm follows a general 

framework composed of three phases: initialization, 

intensification and diversification. The initialization phase is 

primarily aimed to construct a feasible initial timetable using 

a fast greedy heuristic. When a feasible initial assignment is 

reached, an adaptively combined intensification (Tabu Search) 

and diversification (Perturbation Operator from Iterated Local 

Search) phase is used in order to reduce the number of soft 

constraint violations without breaking hard constraints any 

more.  

Genetic Algorithms: The concept of GAs were 

essentially invented by one man—John Holland—in the 

1960's. Genetic algorithms (GAs) are numerical optimization 

algorithms that are as a result of both natural selection and 

natural genetics. The method which is general in nature is 

capable of being applied to a wider range of problems unlike 

most procedural approaches. Genetic algorithms help to solve 

practical problems on a daily basis. The algorithms are simple 

to understand and the required computer code easy to write. 

Alberto Colorni (1990) compared two versions of the genetic 

algorithm (GA), with and without local search, both to a 

handmade timetable and to two other approaches based on 

simulated annealing and tabu search. The results show that 

GA with local search and tabu search with relaxation both 

outperform simulated annealing and handmade timetables.  

Constraint satisfaction problem (CSP): deals with 

assignment of values from its domains to each variable such 

that no constraint is violated. CSP has three components: 

variables, values and constraints. In general, CSP consists of: 

a finite set of variable X = {x1,…,xn}  with respective 

domains D = {D1,…, Dn} which list the possible values for 

each variable Di = {vi,…,vk} and a set of constraints C = 

{C1, …, Ct} .The constraints limit the possible values that a 

variable can have. A solution of a CSP is a consistent 

assignment of all variables to values in such a way that all the 

constraints are satisfied Zhang (2005). A sample case study 

problem is investigated and a constraint satisfaction 

programming approach is implemented using ILOG 

Scheduler and ILOG Solver. 

Compactness is a type of constraint that is usually 

required in school timetabling for the students but not 

required for the teachers. There are several research works 

mentioned compactness and specifically modeled as a hard 

constraint (Andreas Drexl et al., 1997). On the other hand, 

some researchers presented the compactness as soft 

constraints or modeled as objective function. Lübbecke 

(2010) regarded compactness for curriculum as soft 

constraints because the purpose is to schedule the 

corresponding courses consecutively over a day for every 

curriculum. In contrast,   Ramon Alvarez-Valdes (2002) 

presented the concept of forming compactness with the aim 

that every student’s timetable must be as compact as 

possible. As such, they proposed the calculation of 

compactness based on the outputs from scheduling student 

timetables.  

This paper deals with the compactness of every 

student class. The difference is that constraints are added to 

the model and objective function is built as goal of 

scheduling timetabling in VNUIU. Figure 1 below is the 

illustration of the way to calculate the compactness. The 

mathematical formulation is presented in the modeling 

section. 

 

Morning 1 2 3 4 5 6 

       

Afternoon 7 8 9 10 11 12 

       

(a) 

 

Morning 1 2 3 4 5 6 

       

Afternoon 7 8 9 10 11 12 

       

(b) 

Figure 1: (a) Example of a compact timetable where 

shadow zones stand for assigned courses; (b) Example 

of a non-compact timetable 

 

As for example (a), the total compactness is 3 because 

three days without classes will be received the value of one 

per each. Conversely, the total compactness for the example 

(b) are 11 because five days with only one single class will be 

received the value of two per each and one day without 

classes will be received the value of one   

 

2. MODEL DEVELOPMENT: 
2.1. Assumptions: 

• Each course is taught by one lecturer;  

• Each course is already assigned one lecturer 

except for general courses such as physical 

training, politics courses, etc.… 

• Each course is assigned one session per week 

regardless of the length of each course. For those 

courses with two credits, they are required to be 

assigned consecutively over a session such as IE 1, 

IE2, etc.…. 

• Laboratory courses are treated as separate courses; 

• Courses are scheduled on a weekly-basis and there 

is no change of the schedule until the end of 

semester. 

• Each student class requires prerequisite courses. 

These courses are required to schedule in different 

timeslots. Furthermore, each semester, faculties 

allow students to register some elective courses as 



 

 

 

well as courses which students have failed in 

earlier semesters. These courses can be schedule 

simultaneously with required courses belonging to 

each student class. 

• Each session lasts for four periods with 180 

minutes per session including break time.  

• Each course is scheduled to one classroom. 

2.2. Notation: 

Variable Definition 

PARAMETERS  

C Set of courses  

Ctype 

 

Type of course 

L Set of lecturers  

R Set of classrooms  

TY Set of type of classrooms (theoretical, 

biotech laboratories…) 

 

Capatype 

 

The number of availabilities of each 

type of classroom 

 

T Set of timeslots  

G Set of student classes 

Ml,t 

 

Lecture-timeslot matrix. Binary matrix 

in which a 1 in position (l, t) means 

that lecturer l is available for teaching 

at timeslot t and vice versa. 

Kc,l Course-Lecturer matrix. Binary matrix 

in which a 1 in position (c,l) means 

that lecturer l can teach course c and 

vice versa. 

 

Hc,g Course-Group matrix. Binary matrix 

in which a 1 in position (c,g) means 

that required course c is studied by 

group g and vice versa. 

DECISION 

VARIABLES 

 

 

 

 

 

 

 

 

 

It can be seen that this problem is complicated and 

requires many combinations of integer values, which can 

rise exponentially with the size of the problem. In order to 

reduce the number of variables and optimize the 

performance of CPLEX solver, some binary matrices are 

employed to the model. Thanks to CPLEX Optimization, 

by using these matrices, the numbers of generated variables 

have been reduced.  

Below is the formulation of university timetabling 

model. This model addresses solving two critical 

requirements at VNUIU. Firstly, it aims to resolve the 

number of courses can be scheduled. This is a must for not 

only in VNUIU, but also in other universities. Each 

semester, VNUIU has to schedule a fixed number of 

courses for student registration. The problem is that 

VNUIU sometimes cannot schedule all courses right away 

due to special requirements. As such, it expects to schedule 

as many courses as possible. This requirement is put to the 

first objective which maximizes the number of courses 

assigned. 

Because of a relative far distance from downtown, the 

students love to study a full day without single session per 

day. It is convenient for them if they have more spare time 

to do personal works and out-of-class study. As such, the 

second objective is formulated to address this issue. It is 

seen as “soft” objective due to the fact that it can be 

violated in some cases because of limited resources such as 

classroom, availability of lecturer, etc. 

Then, the group of constraints is built to guarantee that 

that there is no violation. What makes difference when 

modeling this problem is that there are fewer constraints 

than some previous university timetabling problems while 

solving multi-objective problem, which contributes to the 

reduction of variables and iterations.  

 

2.3. Mathematical Model: 

Objective 1: Maximize the number of courses can be 

assigned 

Maximize 

∑𝑐∈𝐶 ∑𝑙∈𝐿 ∑𝑡∈𝑇  xc,l,t ∀ 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿     (1) 

Objective 2: Minimize the compactness of student class  

Minimize 

∑𝑔∈𝐺 ∑𝑡∈𝑇 compactGroupg,t ∀ 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑡 =
1. .6       (2) 

Problem constraints: 

A lecturer l teaches at most one course at a timeslot t: 

∑𝑐∈𝐶  xc,l,t≤ 1 ∀  𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿            (3) 

The 1st constraint assures that a lecturer teaches at most one 

course at a timeslot at any circumstances. 

A course is scheduled at most one timeslot: 



 

 

 

∑𝑙∈𝐿 ∑𝑡∈𝑇  xc,l,t≤ 1∀  𝑐 ∈ 𝐶                   (4) 

The 2nd constraint guarantees that one course is 

scheduled at most one timeslot. In VNUIU, most of courses 

are studied one session per week. 

Number of courses scheduled to timeslot t is equal 

to the number of rooms available for the course of type 

ty: 

∑𝑐∈𝐶 ∑𝑙∈𝐿  xc,l,t  ≤ Capatype ∀  𝑡 ∈ 𝑇, 𝑡𝑦 ∈ 𝑇𝑌    (5) 

As courses assigned for student registration are 

divided into different type of courses, which requires 

different type of classrooms. As such, the 3rd constraint 

ensures that with each type of course has to be schedule to 

the appropriate type of classroom and at most the number 

of rooms available for such type of classroom.  

Required courses for student class must not be 

overlapped: 

∑𝑐∈𝐶 ∑𝑙∈𝐿  xc,l,t  * Hc,g = assGroupTimesg,t  ∀  𝑔 ∈
𝐺, 𝑡 ∈ 𝑇                                 (6)                                    

Each semester, students belong to different student 

classes are required to study required courses at any 

circumstances. These courses are subject to their 

curriculum upon their entry to VNUIU. The 4th constraint 

assures that there is no violation of time overlapping among 

those courses. 

Any two required courses belonging to group g at 

timeslot t and timeslot t+6 preferred to be assigned over 

a day: 

|assGroupTimesg,t – assGroupTimesg,t+6 |*2  

compactGroupg,t ∀𝑡 ∈ 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑡 < 7, 𝑔 ∈ 𝐺         (7) 

| AssGroupTimesg,t -1|  compactGroupg,t-6  ∀𝑡 ∈
𝑇 𝑤ℎ𝑒𝑟𝑒 𝑡 > 6, 𝑔 ∈ 𝐺                      (8) 

The set of two constraints (7), (8) assign the penalty to 

each of course cannot be paired over a day. This constraint 

addresses the second objective which is to minimize the 

compactness of student class timetables. 

Xc,l,t ∈ {0,1}; ∀𝐶, 𝑇, 𝐿                          (9) 

assGroupTimesg,t ∈ {0,1}; ∀𝐺, 𝑇                 (10) 

compactGroupg,t ∈ {0,1,2}; ∀𝐺, 𝑇                (11) 

Timetabling problem in this paper is a multi-objectives 

model, so it is better to be solved by goal programming 

approach. As such, after solving each objective, the optimal 

value obtained is kept to input the goal constraints. 

There are two specialized constraints which will be 

added to the group of constraints to serve the goal 

programming process including: 

 𝐺𝑜𝑎𝑙 1: ∑𝑐∈𝐶 ∑𝑙∈𝐿 ∑𝑡∈𝑇  Xc,l,t+ (d1-) - (d1+) = Z* 
 ∀ 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿                           (12) 

At this constraint, in order to obtain the maximum 

value from goal 1, (d1-) should be minimized 

𝐺𝑜𝑎𝑙 2: ∑𝑔∈𝐺 ∑𝑡∈𝑇  compactGroupg,t + (d2-)- (d2+) = 
Y* ∀ 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑡 = 1. .6                (13) 

Z*: the value is greater than or equal to optimal value 

obtained from objective 1 

Y*: the value is greater than or equal to optimal value 

obtained from objective 2 

d1-: the amount by which the number of courses can be 

assigned is less than the target value 

d1+: the amount by which the number of courses can be 

assigned exceeds the target value 

d2-: the amount by which the total of compactness is less 

than the target value. 

d2+: the amount by which the total of compactness exceeds 

the target value 

Where d1-, d1+, d2-, d2+ 0 

It is the fact that the timetabling at International 

University should meet both the number of courses can be 

assigned and minimize the idle time of student class 

timetable. Therefore, goal objective function: Min {p1*(d1-) 

+p2*(d2+)} 

There are two alternatives: 

Alternative 1: objective 1 is considered as first priority, 

so p1 is assigned a very big value in comparison with p2 

Alternative 2: objective 2 is considered as first priority, 

so p2 is assigned a very big value in comparison with p1. 

 

3. NUMERICAL ILLUSTRATION: 

A real-world data from International University is 

used for the input to solve the model. The inputs are as 

follows: 

Lecturer Cour

se 

Roo

m 

Type of 

classroo

ms 

Time

slot 

Group 

353 715 150 14 12 251 

With the real-world input data at VNUIU, the problem 

seems to be complicated to solve in the earlier stage as the 

booming of generation of variables and integer values, 

which restricted the model to run out of memory when 

inputting the model to CPLEX environment. The numbers 

of variables generated in the first time are more than 24 

million. Thanks to CPLEX, the model then is modified by 

using subsets which allow binary matrices to be fully used 

to reduce intensely the number of variables. 

Consequently, the formulated problem consisted of 

870.139 non-zero coefficients, 14.155 constraints and 

217.349 variables was solved by optimization solver called 

CPLEX OPL Studio 12.0 using mixed integer 

programming. To solve a large combinatorial problem, the 

solver has been installed in workstation, Intel Xeon, 2.66 

GHz, 64 GB memory.  

The model is thereafter solved by following priority: 

solving objective 1 and then objective 2, respectively. At 

the first attempt, the results return very quickly with only 

two minutes. The results prove that the first objective is 

fully achieved as the aim is to maximize the assignment of 



 

 

 

715 courses. As stated in the modeling section, this 

objective is the critical requirements at VNUIU. 

Then, the second attempt has been done. As for this 

time, because of complicated combination of variables and 

the nature of second objective which is to minimize the 

compactness of student class timetables, the solving has 

taken more time than the first attempt to return solutions. 

This is the integer optimal solution with 10% gap as it did 

not return the exact optimal solution after solving several 

hours. The total compactness is 982. It can be seen that 

from the results that there are seven groups eliminated. The 

results for this objective are very favorable. 

In addition, to measure the performance and results 

obtained when solving the model, three algorithms were 

employed including mixed integer programming (MIP), 

constraint programming (CP). 

Table 1: Summary of result benchmarks 

 

 

 

 

 

 

 

 

At scenario 1, after running objective 1 (maximize the 

number of courses can be assigned), MIP yields the better 

solution than CP in terms of processing time and results. As 

such, 715 courses can be assigned when solving the model 

by MIP, whereas 707 courses can be assigned with CP even 

CP produces the better solution regarding total timetable 

compactness than MIP.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Measurement of performance between MIP and 

CP when solving objective 1 

At scenario 2, the objective 2 has been solved by both 

MIP and CP. Interestingly, due to the complex combination 

of constraints and variables, this process required hours to 

solve. As a  

result, only solving MIP return the near-optimal value with 

10% GAP, while CP cannot produce the solution after more 

than 10 hour-running time.  

 

 

 

 

 

 

 

 

Figure 3: Measurement of performance between MIP and 

CP when solving objective 2 

Because we cannot obtain fully the optimal solutions 

through the benchmarking in table 1, the goal programming 

approach is used to test whether the model is qualified or 

not to achieve the optimal solutions which can satisfy the 

two objectives. 

In order to do that, we created two additional “soft” 

constraints: the first constraint is that the number of courses 

assigned is at least 715, so we have to minimize the amount 

by which the number of courses assigned fewer than 715. 

The second constraint is that the total compactness is at 

most 982, so we have to minimize the amount by which the 

total compactness greater than 982. In order to seek the 

optimal solution at this stage, there are 11 attempts running 

with different target values based on the priority of the 

goals. 1st running to 8th running addresses the priority of 

goal 1, while 9th running to 11th running prioritize goal 2. 

Then the weight is added as follows: those with first 

priority receive value of 1000, the remaining receive value 

of 1.  

Table 2: Table of Priorities to solve goal programming 

 Goal 1  Goal 2  

Running 1  Priority  -  

Running 2  Priority  -  

Running 3  Priority  -  

Running 4  Priority  -  

Running 5  Priority  -  

Running 6  Priority  -  

Running 7  Priority  -  

Running 8  Priority  -  

Running 9   Priority  

Running 10  -  Priority  

Running 11  -  Priority  

[1]
 No exact optimal solution (GAP:10%) 

[2]
 No exact optimal solution (GAP:10%) 

[3]
 No solution returns  

[4]
 No solution returns  

[1] [2] 

[3] [4] 



 

 

 

During the solving process at this stage, it takes for a 

while to accomplish the optimal solution because only a 

half of attempts running return the optimal solution. It can 

be seen that we cannot obtain the solutions if we prioritize 

the second goal as it did not return the solutions even for 

several hours with the powerful workstation.  Table 3 

clearly presents the comparison for each run. 

 

Table 3: Result Benchmark for Goal Programming 

 

 

 

 

 

 

 

 

 

 

Table 4: Result Benchmark for Goal Programming 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen that 6th running produces the better 

solution than the others running as it satisfies the first goal 

(maximize the number of courses can be assigned. In this 

case, all courses can be scheduled) while it yields the better 

compactness of timetables. The remarkable point is that 

using goal programming at this stage returns the optimal 

solutions rather than the former approaches used. 

Table 5: Result comparison 

 

From table 5, the resulting from solving objective 1 

shows that there are 715 courses assigned without violating 

constraints. The number of groups can be assigned and 

number of courses belonging to groups that can be assigned 

are 251, 1329, respectively. The total compactness of 

timetables is 1969. Things are different when solving 

objective 2 as the goal of objective 2 is to minimize the two 

required courses that can be assigned over a day; the total 

compactness of timetables is smaller than the earlier result. 

However, the number of courses assigned reduces 

dramatically from 715 to 448. There are seven groups 

dropped out due to their courses cannot assigned.  

Based on the resulting table, we can observe the 

timetable for group 250 (MAMA15IU21) for three cases as 

follows: 

Case 1 – Solving only first objective 

 

 

 
 
 
Case 2 – Solving only second objective 

 

 

 

 

 

 

Case 3 – Solving both objectives at the same time 

 

 

 

 

 

It can be seen that in the first case, the timetable for group 

of student MAMA15IU21 is non-compact, whereas the 

second case is the compact one. However, the second case 

dropped out one course. The last case produces the balance 

solution which satisfies both objectives. 

 

Table 6: Result comparison 2 

 

 

 

 

 

 

 

 

 Morning 1 2 3 4 5 6 

  x x   X 

Afternoon 7 8 9 10 11 12 

    x  x 

 
Morning 1 2 3 4 5 6 

     X X 

Afternoon 7 8 9 10 11 12 

     x x 

 Morning 1 2 3 4 5 6 

 X   X   

Afternoon 7 8 9 10 11 12 

 x x  X   

 Current 

timetable system 

at VNU-IU 

Paper 

Methodology  Heuristics MIP 

Solutions Optimal 

solutions are not 

achievable 

Optimal 

solutions are 

fully achieved 

Courses assigned 715 715 

Compactness 2058 1020 

Computational time Approximately 

4 hours 

Approximately 

10 hours 

 



 

 

 

The current approach from VNUIU tends to use heuristics  

to find the solutions rather than the optimal solutions. In 

this aspect, the paper deals with MIP and then use goal 

programming to find out the optimal solutions. Practically, 

optimal solutions are fully achieved by the approach used 

in the paper.  

To measure the quality of solutions to identify whether 

it is valid or not in comparison with the results of 

scheduling timetabling obtained by current system at 

VNUIU, table 16 presents the result comparison between 

two approaches. It is obvious that solutions from this paper 

yield the impressive results in terms of timetable 

compactness. Once again, it is proved that goal 

programming approach is capable of generating efficient 

timetables for the large combinatorial university 

timetabling problem. Needless to say, the decision maker 

from VNUIU could easily choose these results as an 

alternative in comparison with the current solutions 

generated by current timetable system.   

 

4. CONCLUDING REMARKS: 

Results from this paper suggest that Mixed Integer 

Programming is capable of generating university 

timetabling. It is clear that the resulting reaches VNUIU’s 

goals for scheduling timetabling.  

With the strong support to solve scheduling problem 

by MIP from CPLEX Optimization Studio 12, the model is 

refined as compact as possible as long as it reduces the 

number of variables to optimize the solving process. 

Especially, the inputs are improved very much and fully 

supported by CPLEX for the solving stages. 

Besides, this is a multi-objective problem, by using 

goal programming approach, the best compromised 

solutions are obtained. 

In order to produce efficient timetables for student 

registration in the future, it is suggested that there should a 

utilization of the outputs from CPLEX to input the current 

timetable system at VNUIU to save time and achieve 

optimal solutions. 
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