

A Multi-objective optimization approach for solving

university course timetabling problem - A case study of

International University, VNU in HCMC, Vietnam

Nguyen Huu Tri †

Department of Industrial & Systems Engineering

International University-VNU, Ho Chi Minh City, Vietnam

Tel: (+84) 903381498. Email: nhtri@hcmiu.edu.vn

Ho Thanh Phong

Department of Industrial & Systems Engineering

International University-VNU, Ho Chi Minh City, Vietnam

Tel: (+84) 903718904. Email: htphong@hcmiu.edu.vn

Ho Doan Quoc

Department of Industrial & Systems Engineering

International University-VNU, Ho Chi Minh City, Vietnam

Tel: (+84) 908244933. Email: hdquoc@hcmiu.edu.vn

Abstract. University course timetabling problem is always a challenge for researcher due to the inherent complexity and

variability of the problem. In this paper, two objectives were considered while optimizing the real course timetabling at the

International University were considered, including i) the maximization the number of courses assigned and ii) the minimization

timetable compactness. The Mixed Integer Programming (MIP) was employed for formulating and solving individual

optimization problem. To deal with multiple objectives, Goal Programming (GP) approach was utilized to achieve the best

compromised solutions. The solutions were obtained by using optimization software CPLEX. Computational results revealed that

this approach yields better schedules in terms of timetable compactness as compared to the currently existing approach.
Key words: University course timetabling, Mixed integer programming, Multi-objective optimization, Goal programming,

Timetable compactness.

1. INTRODUCTION

In recent years, the development of society has led to

the blooming expansion of universities. As such, the

number of student enrollment and courses has been

increased dramatically. In order to maintain the quality of

education, each university itself is enforced to deliver good

timetables for students and teachers. To have an efficient

timetable, each educational institution has to make the

arrangement of limited resources of teachers and

classrooms for scheduling a reasonable timetable.

Timetabling problem has proved its attraction to a huge of

researchers not only in the past, but also in the time being

because this problem is in class of NP-hard problem. That

is to say, finding an optimum solution gets more and more

difficult as the model expands in terms of size as well as

specialized requirements from each educational institution.

“Timetabling represents the most important planning

exercise in the school calendar. It not only gives practical

expression to the curricular philosophy of the school, it sets,

maintains and regulates the teaching and learning pulse of the

school and ensures the delivery of quality education for all

students” Jardine (2006).

From what educators defined timetabling term,

timetabling plays the extreme important role for educational

institution.

Wren (2005) has defined timetabling as follows:

‘‘Timetabling is the allocation, subject to constraints, of given

resources to objects being placed in space time, in such a way

as to satisfy as nearly as possible a set of desirable

objectives.’’

According to Edmund Kieran Burke (2002), university

timetabling problem is decomposed into two main categories:

course timetabling and exam timetabling. These problems are

mailto:nhtri@hcmiu.edu.vn
mailto:htphong@hcmiu.edu.vn
mailto:hdquoc@hcmiu.edu.vn

subject to some constraints which are usually categorized to

two types: hard constraints and soft constraints Burke (1997).

Hard constraints are constraints that must be satisfied under

any circumstances while soft constraints are those can be

violated but the violations may affect the quality of teaching

Shao-wen (2014).

In order to solve the university timetabling problem,

there are a lot of approaches used by research works.

According to the researchers, the approaches are classified

into some categories as follows:

1. Integer Programming

2. Constraints Satisfaction Programming

3. Genetic Algorithms

4. Tabu search

Integer Linear Programming: Linear programming is

a mathematical programming technique to solve optimization

problems. A linear programming problem is a mathematical

formulation of an optimization problem defined in terms of

an objective function and a set of constraints. The objective

function is a linear function of the unknowns (variables) and

the set of constraints consists of linear equalities and linear

inequalities. Integer linear programming (ILP) or simply

integer programming (IP) is a subset of linear programming,

where some or all of the variables are restricted to take only

integer or whole number (as opposed to fractional) values. If

all the variables are restricted to take only integer variables,

the problem is called pure integer linear programming

problem. If the restrictions are such that, some but not all of

the variables can take only integer values, then such a

problem is said to be mixed integer linear programming

problem. If the variables may take either 0 or 1, then such a

problem is called binary integer linear programming problem

Hillier (2010).

Daskalaki et al. (2004) suggested a novel integer

programming to model the timetabling problem. With the

very large number of possible variables such as groups of

students, teachers, courses, classrooms, they proposed 0-1

binary variables to bring great flexibility in the modeling

process by reducing the large number of variables to

manageable sizes. By minimizing the cost function, the

model then is solved by commercial software using branch-

and-bound approach.

Skocdopolova (2012) proposed integer goal

programming to solve the real timetabling problem at

department of econometrics at University of Economics,

Prague. A sequential three-stage goal programming model is

introduced. This approach involves three stages. At each stage,

the optimal values are used as inputs for the next stage. At

first teachers are assigned to courses, then courses are

assigned to time slots, and finally time slots are assigned to

classrooms.

Mixed integer programming (MIP): A mixed-integer

programming (MIP) problem is one where some of

the decision variables are constrained to be integer values (i.e.

whole numbers such as -1, 0, 1, 2, etc.) at the optimal

solution.

The "classic" method for solving these problems is

called Branch and Bound. This method begins by finding

the optimal solution to the "relaxation" of the problem

without the integer constraints (via standard linear or

nonlinear optimization methods). If in this solution, the

decision variables with integer constraints have integer values,

then no further work is required. If one or more integer

variables have non-integral solutions, the Branch and Bound

method chooses one such variable and "branches," creating

two new sub problems where the value of that variable is

more tightly constrained. These sub problems are solved and

the process is repeated, until a solution that satisfies all of the

integer constraints is found.

To be specific, Aizam (2012) presented Mixed Integer

Linear Programming (MLIP) models which incorporate all

hard constraints and the desirable soft constraints.

Interestingly, the university timetabling problem has been

decomposed into three sub models for different purposes.

First, the first model solves hard constraints, then the second

model solves the soft constraints. The last one is the

combination of the first and the second models to be solved.

The computational results proved that MLIP is capable of

generating university course timetabling.

The tabu search: The tabu search is a metaheuristic

originally introduced by Glover (1990). Starting from a

candidate solution (also known as a potential solution), the

tabu search is a local search algorithm that moves from one

candidate solution to another candidate solution (referred to

as a neighbor) until some problem dependent termination

criteria has been met.

Moving from a candidate solution to a neighbor is

accomplished using a move operator, where a single change

is made to the candidate solution resulting in its neighbor. A

neighborhood is defined as a set of neighbors that occur as a

result of implementing a single move to a candidate solution.

In order to prevent the search from cycling (returning to a

previously encountered area of the search space), a tabu list is

kept. This tabu list stores a set of k recent candidate solutions.

Alternatively, previous moves that have been applied to

candidate solutions can also be stored in the tabu list Schaerf

(1996).

A move is rejected if it results in a candidate solution

that is in the tabu list. Another move must then be made. An

advantage of the tabu search is its use of the tabu list. This list

resembles a form of memory, preventing the search algorithm

from returning to previous candidate solutions. A

disadvantage of the tabu search is that the focus is always on

a single candidate solution. Thus, the possibility arises that a

large area of the search space is not covered Sastrodjojo

(1998).

Zhipeng L üa (2001) presents an Adaptive Tabu Search

algorithm for solving the problem of curriculum-based course

timetabling. The proposed algorithm follows a general

framework composed of three phases: initialization,

intensification and diversification. The initialization phase is

primarily aimed to construct a feasible initial timetable using

a fast greedy heuristic. When a feasible initial assignment is

reached, an adaptively combined intensification (Tabu Search)

and diversification (Perturbation Operator from Iterated Local

Search) phase is used in order to reduce the number of soft

constraint violations without breaking hard constraints any

more.

Genetic Algorithms: The concept of GAs were

essentially invented by one man—John Holland—in the

1960's. Genetic algorithms (GAs) are numerical optimization

algorithms that are as a result of both natural selection and

natural genetics. The method which is general in nature is

capable of being applied to a wider range of problems unlike

most procedural approaches. Genetic algorithms help to solve

practical problems on a daily basis. The algorithms are simple

to understand and the required computer code easy to write.

Alberto Colorni (1990) compared two versions of the genetic

algorithm (GA), with and without local search, both to a

handmade timetable and to two other approaches based on

simulated annealing and tabu search. The results show that

GA with local search and tabu search with relaxation both

outperform simulated annealing and handmade timetables.

Constraint satisfaction problem (CSP): deals with

assignment of values from its domains to each variable such

that no constraint is violated. CSP has three components:

variables, values and constraints. In general, CSP consists of:

a finite set of variable X = {x1,…,xn} with respective

domains D = {D1,…, Dn} which list the possible values for

each variable Di = {vi,…,vk} and a set of constraints C =

{C1, …, Ct} .The constraints limit the possible values that a

variable can have. A solution of a CSP is a consistent

assignment of all variables to values in such a way that all the

constraints are satisfied Zhang (2005). A sample case study

problem is investigated and a constraint satisfaction

programming approach is implemented using ILOG

Scheduler and ILOG Solver.

Compactness is a type of constraint that is usually

required in school timetabling for the students but not

required for the teachers. There are several research works

mentioned compactness and specifically modeled as a hard

constraint (Andreas Drexl et al., 1997). On the other hand,

some researchers presented the compactness as soft

constraints or modeled as objective function. Lübbecke

(2010) regarded compactness for curriculum as soft

constraints because the purpose is to schedule the

corresponding courses consecutively over a day for every

curriculum. In contrast, Ramon Alvarez-Valdes (2002)

presented the concept of forming compactness with the aim

that every student’s timetable must be as compact as

possible. As such, they proposed the calculation of

compactness based on the outputs from scheduling student

timetables.

This paper deals with the compactness of every

student class. The difference is that constraints are added to

the model and objective function is built as goal of

scheduling timetabling in VNUIU. Figure 1 below is the

illustration of the way to calculate the compactness. The

mathematical formulation is presented in the modeling

section.

Morning 1 2 3 4 5 6

Afternoon 7 8 9 10 11 12

(a)

Morning 1 2 3 4 5 6

Afternoon 7 8 9 10 11 12

(b)

Figure 1: (a) Example of a compact timetable where

shadow zones stand for assigned courses; (b) Example

of a non-compact timetable

As for example (a), the total compactness is 3 because

three days without classes will be received the value of one

per each. Conversely, the total compactness for the example

(b) are 11 because five days with only one single class will be

received the value of two per each and one day without

classes will be received the value of one

2. MODEL DEVELOPMENT:
2.1. Assumptions:

• Each course is taught by one lecturer;

• Each course is already assigned one lecturer

except for general courses such as physical

training, politics courses, etc.…

• Each course is assigned one session per week

regardless of the length of each course. For those

courses with two credits, they are required to be

assigned consecutively over a session such as IE 1,

IE2, etc.….

• Laboratory courses are treated as separate courses;

• Courses are scheduled on a weekly-basis and there

is no change of the schedule until the end of

semester.

• Each student class requires prerequisite courses.

These courses are required to schedule in different

timeslots. Furthermore, each semester, faculties

allow students to register some elective courses as

well as courses which students have failed in

earlier semesters. These courses can be schedule

simultaneously with required courses belonging to

each student class.

• Each session lasts for four periods with 180

minutes per session including break time.

• Each course is scheduled to one classroom.

2.2. Notation:

Variable Definition

PARAMETERS

C Set of courses

Ctype

Type of course

L Set of lecturers

R Set of classrooms

TY Set of type of classrooms (theoretical,

biotech laboratories…)

Capatype

The number of availabilities of each

type of classroom

T Set of timeslots

G Set of student classes

Ml,t

Lecture-timeslot matrix. Binary matrix

in which a 1 in position (l, t) means

that lecturer l is available for teaching

at timeslot t and vice versa.

Kc,l Course-Lecturer matrix. Binary matrix

in which a 1 in position (c,l) means

that lecturer l can teach course c and

vice versa.

Hc,g Course-Group matrix. Binary matrix

in which a 1 in position (c,g) means

that required course c is studied by

group g and vice versa.

DECISION

VARIABLES

It can be seen that this problem is complicated and

requires many combinations of integer values, which can

rise exponentially with the size of the problem. In order to

reduce the number of variables and optimize the

performance of CPLEX solver, some binary matrices are

employed to the model. Thanks to CPLEX Optimization,

by using these matrices, the numbers of generated variables

have been reduced.

Below is the formulation of university timetabling

model. This model addresses solving two critical

requirements at VNUIU. Firstly, it aims to resolve the

number of courses can be scheduled. This is a must for not

only in VNUIU, but also in other universities. Each

semester, VNUIU has to schedule a fixed number of

courses for student registration. The problem is that

VNUIU sometimes cannot schedule all courses right away

due to special requirements. As such, it expects to schedule

as many courses as possible. This requirement is put to the

first objective which maximizes the number of courses

assigned.

Because of a relative far distance from downtown, the

students love to study a full day without single session per

day. It is convenient for them if they have more spare time

to do personal works and out-of-class study. As such, the

second objective is formulated to address this issue. It is

seen as “soft” objective due to the fact that it can be

violated in some cases because of limited resources such as

classroom, availability of lecturer, etc.

Then, the group of constraints is built to guarantee that

that there is no violation. What makes difference when

modeling this problem is that there are fewer constraints

than some previous university timetabling problems while

solving multi-objective problem, which contributes to the

reduction of variables and iterations.

2.3. Mathematical Model:

Objective 1: Maximize the number of courses can be

assigned

Maximize

∑𝑐∈𝐶 ∑𝑙∈𝐿 ∑𝑡∈𝑇 xc,l,t ∀ 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (1)

Objective 2: Minimize the compactness of student class

Minimize

∑𝑔∈𝐺 ∑𝑡∈𝑇 compactGroupg,t ∀ 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑡 =
1. .6 (2)

Problem constraints:

A lecturer l teaches at most one course at a timeslot t:

∑𝑐∈𝐶 xc,l,t≤ 1 ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (3)

The 1st constraint assures that a lecturer teaches at most one

course at a timeslot at any circumstances.

A course is scheduled at most one timeslot:

∑𝑙∈𝐿 ∑𝑡∈𝑇 xc,l,t≤ 1∀ 𝑐 ∈ 𝐶 (4)

The 2nd constraint guarantees that one course is

scheduled at most one timeslot. In VNUIU, most of courses

are studied one session per week.

Number of courses scheduled to timeslot t is equal

to the number of rooms available for the course of type

ty:

∑𝑐∈𝐶 ∑𝑙∈𝐿 xc,l,t ≤ Capatype ∀ 𝑡 ∈ 𝑇, 𝑡𝑦 ∈ 𝑇𝑌 (5)

As courses assigned for student registration are

divided into different type of courses, which requires

different type of classrooms. As such, the 3rd constraint

ensures that with each type of course has to be schedule to

the appropriate type of classroom and at most the number

of rooms available for such type of classroom.

Required courses for student class must not be

overlapped:

∑𝑐∈𝐶 ∑𝑙∈𝐿 xc,l,t * Hc,g = assGroupTimesg,t ∀ 𝑔 ∈
𝐺, 𝑡 ∈ 𝑇 (6)

Each semester, students belong to different student

classes are required to study required courses at any

circumstances. These courses are subject to their

curriculum upon their entry to VNUIU. The 4th constraint

assures that there is no violation of time overlapping among

those courses.

Any two required courses belonging to group g at

timeslot t and timeslot t+6 preferred to be assigned over

a day:

|assGroupTimesg,t – assGroupTimesg,t+6 |*2

compactGroupg,t ∀𝑡 ∈ 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑡 < 7, 𝑔 ∈ 𝐺 (7)

| AssGroupTimesg,t -1| compactGroupg,t-6 ∀𝑡 ∈
𝑇 𝑤ℎ𝑒𝑟𝑒 𝑡 > 6, 𝑔 ∈ 𝐺 (8)

The set of two constraints (7), (8) assign the penalty to

each of course cannot be paired over a day. This constraint

addresses the second objective which is to minimize the

compactness of student class timetables.

Xc,l,t ∈ {0,1}; ∀𝐶, 𝑇, 𝐿 (9)

assGroupTimesg,t ∈ {0,1}; ∀𝐺, 𝑇 (10)

compactGroupg,t ∈ {0,1,2}; ∀𝐺, 𝑇 (11)

Timetabling problem in this paper is a multi-objectives

model, so it is better to be solved by goal programming

approach. As such, after solving each objective, the optimal

value obtained is kept to input the goal constraints.

There are two specialized constraints which will be

added to the group of constraints to serve the goal

programming process including:

 𝐺𝑜𝑎𝑙 1: ∑𝑐∈𝐶 ∑𝑙∈𝐿 ∑𝑡∈𝑇 Xc,l,t+ (d1-) - (d1+) = Z*
 ∀ 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (12)

At this constraint, in order to obtain the maximum

value from goal 1, (d1-) should be minimized

𝐺𝑜𝑎𝑙 2: ∑𝑔∈𝐺 ∑𝑡∈𝑇 compactGroupg,t + (d2-)- (d2+) =
Y* ∀ 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑡 = 1. .6 (13)

Z*: the value is greater than or equal to optimal value

obtained from objective 1

Y*: the value is greater than or equal to optimal value

obtained from objective 2

d1-: the amount by which the number of courses can be

assigned is less than the target value

d1+: the amount by which the number of courses can be

assigned exceeds the target value

d2-: the amount by which the total of compactness is less

than the target value.

d2+: the amount by which the total of compactness exceeds

the target value

Where d1-, d1+, d2-, d2+ 0

It is the fact that the timetabling at International

University should meet both the number of courses can be

assigned and minimize the idle time of student class

timetable. Therefore, goal objective function: Min {p1*(d1-)

+p2*(d2+)}

There are two alternatives:

Alternative 1: objective 1 is considered as first priority,

so p1 is assigned a very big value in comparison with p2

Alternative 2: objective 2 is considered as first priority,

so p2 is assigned a very big value in comparison with p1.

3. NUMERICAL ILLUSTRATION:

A real-world data from International University is

used for the input to solve the model. The inputs are as

follows:

Lecturer Cour

se

Roo

m

Type of

classroo

ms

Time

slot

Group

353 715 150 14 12 251

With the real-world input data at VNUIU, the problem

seems to be complicated to solve in the earlier stage as the

booming of generation of variables and integer values,

which restricted the model to run out of memory when

inputting the model to CPLEX environment. The numbers

of variables generated in the first time are more than 24

million. Thanks to CPLEX, the model then is modified by

using subsets which allow binary matrices to be fully used

to reduce intensely the number of variables.

Consequently, the formulated problem consisted of

870.139 non-zero coefficients, 14.155 constraints and

217.349 variables was solved by optimization solver called

CPLEX OPL Studio 12.0 using mixed integer

programming. To solve a large combinatorial problem, the

solver has been installed in workstation, Intel Xeon, 2.66

GHz, 64 GB memory.

The model is thereafter solved by following priority:

solving objective 1 and then objective 2, respectively. At

the first attempt, the results return very quickly with only

two minutes. The results prove that the first objective is

fully achieved as the aim is to maximize the assignment of

715 courses. As stated in the modeling section, this

objective is the critical requirements at VNUIU.

Then, the second attempt has been done. As for this

time, because of complicated combination of variables and

the nature of second objective which is to minimize the

compactness of student class timetables, the solving has

taken more time than the first attempt to return solutions.

This is the integer optimal solution with 10% gap as it did

not return the exact optimal solution after solving several

hours. The total compactness is 982. It can be seen that

from the results that there are seven groups eliminated. The

results for this objective are very favorable.

In addition, to measure the performance and results

obtained when solving the model, three algorithms were

employed including mixed integer programming (MIP),

constraint programming (CP).

Table 1: Summary of result benchmarks

At scenario 1, after running objective 1 (maximize the

number of courses can be assigned), MIP yields the better

solution than CP in terms of processing time and results. As

such, 715 courses can be assigned when solving the model

by MIP, whereas 707 courses can be assigned with CP even

CP produces the better solution regarding total timetable

compactness than MIP.

Figure 2: Measurement of performance between MIP and

CP when solving objective 1

At scenario 2, the objective 2 has been solved by both

MIP and CP. Interestingly, due to the complex combination

of constraints and variables, this process required hours to

solve. As a

result, only solving MIP return the near-optimal value with

10% GAP, while CP cannot produce the solution after more

than 10 hour-running time.

Figure 3: Measurement of performance between MIP and

CP when solving objective 2

Because we cannot obtain fully the optimal solutions

through the benchmarking in table 1, the goal programming

approach is used to test whether the model is qualified or

not to achieve the optimal solutions which can satisfy the

two objectives.

In order to do that, we created two additional “soft”

constraints: the first constraint is that the number of courses

assigned is at least 715, so we have to minimize the amount

by which the number of courses assigned fewer than 715.

The second constraint is that the total compactness is at

most 982, so we have to minimize the amount by which the

total compactness greater than 982. In order to seek the

optimal solution at this stage, there are 11 attempts running

with different target values based on the priority of the

goals. 1st running to 8th running addresses the priority of

goal 1, while 9th running to 11th running prioritize goal 2.

Then the weight is added as follows: those with first

priority receive value of 1000, the remaining receive value

of 1.

Table 2: Table of Priorities to solve goal programming

 Goal 1 Goal 2

Running 1 Priority -

Running 2 Priority -

Running 3 Priority -

Running 4 Priority -

Running 5 Priority -

Running 6 Priority -

Running 7 Priority -

Running 8 Priority -

Running 9 Priority

Running 10 - Priority

Running 11 - Priority

[1]
 No exact optimal solution (GAP:10%)

[2]
 No exact optimal solution (GAP:10%)

[3]
 No solution returns

[4]
 No solution returns

[1] [2]

[3] [4]

During the solving process at this stage, it takes for a

while to accomplish the optimal solution because only a

half of attempts running return the optimal solution. It can

be seen that we cannot obtain the solutions if we prioritize

the second goal as it did not return the solutions even for

several hours with the powerful workstation. Table 3

clearly presents the comparison for each run.

Table 3: Result Benchmark for Goal Programming

Table 4: Result Benchmark for Goal Programming

It can be seen that 6th running produces the better

solution than the others running as it satisfies the first goal

(maximize the number of courses can be assigned. In this

case, all courses can be scheduled) while it yields the better

compactness of timetables. The remarkable point is that

using goal programming at this stage returns the optimal

solutions rather than the former approaches used.

Table 5: Result comparison

From table 5, the resulting from solving objective 1

shows that there are 715 courses assigned without violating

constraints. The number of groups can be assigned and

number of courses belonging to groups that can be assigned

are 251, 1329, respectively. The total compactness of

timetables is 1969. Things are different when solving

objective 2 as the goal of objective 2 is to minimize the two

required courses that can be assigned over a day; the total

compactness of timetables is smaller than the earlier result.

However, the number of courses assigned reduces

dramatically from 715 to 448. There are seven groups

dropped out due to their courses cannot assigned.

Based on the resulting table, we can observe the

timetable for group 250 (MAMA15IU21) for three cases as

follows:

Case 1 – Solving only first objective

Case 2 – Solving only second objective

Case 3 – Solving both objectives at the same time

It can be seen that in the first case, the timetable for group

of student MAMA15IU21 is non-compact, whereas the

second case is the compact one. However, the second case

dropped out one course. The last case produces the balance

solution which satisfies both objectives.

Table 6: Result comparison 2

 Morning 1 2 3 4 5 6

 x x X

Afternoon 7 8 9 10 11 12

 x x

Morning 1 2 3 4 5 6

 X X

Afternoon 7 8 9 10 11 12

 x x

 Morning 1 2 3 4 5 6

 X X

Afternoon 7 8 9 10 11 12

 x x X

 Current

timetable system

at VNU-IU

Paper

Methodology Heuristics MIP

Solutions Optimal

solutions are not

achievable

Optimal

solutions are

fully achieved

Courses assigned 715 715

Compactness 2058 1020

Computational time Approximately

4 hours

Approximately

10 hours

The current approach from VNUIU tends to use heuristics

to find the solutions rather than the optimal solutions. In

this aspect, the paper deals with MIP and then use goal

programming to find out the optimal solutions. Practically,

optimal solutions are fully achieved by the approach used

in the paper.

To measure the quality of solutions to identify whether

it is valid or not in comparison with the results of

scheduling timetabling obtained by current system at

VNUIU, table 16 presents the result comparison between

two approaches. It is obvious that solutions from this paper

yield the impressive results in terms of timetable

compactness. Once again, it is proved that goal

programming approach is capable of generating efficient

timetables for the large combinatorial university

timetabling problem. Needless to say, the decision maker

from VNUIU could easily choose these results as an

alternative in comparison with the current solutions

generated by current timetable system.

4. CONCLUDING REMARKS:

Results from this paper suggest that Mixed Integer

Programming is capable of generating university

timetabling. It is clear that the resulting reaches VNUIU’s

goals for scheduling timetabling.

With the strong support to solve scheduling problem

by MIP from CPLEX Optimization Studio 12, the model is

refined as compact as possible as long as it reduces the

number of variables to optimize the solving process.

Especially, the inputs are improved very much and fully

supported by CPLEX for the solving stages.

Besides, this is a multi-objective problem, by using

goal programming approach, the best compromised

solutions are obtained.

In order to produce efficient timetables for student

registration in the future, it is suggested that there should a

utilization of the outputs from CPLEX to input the current

timetable system at VNUIU to save time and achieve

optimal solutions.

5. PREFERENCES:

Aizam, L. C. a. N. A. H. (2012). Mixed Integer Linear

Programming Models for University Timetabling. East-

West J. of Mathematics,, 90-99.

Alberto Colorni, M. D., Vittorio Maniezzo. (1990). Genetic

Algorithms and highly constrained problems: The time-

tabel case. Parallel Problem Solving from Nature, 55-

59.

Andreas Drexl , F. S. (1997). Distribution requirements and

compactness constraints in school timetabling

European Journal of Operational Research, 102, 193-

214

Birbas, T., Daskalaki, S., Housos, E. (1997). Course and

Teacher Scheduling in Hellenic High Schools. Proc. of

the 4th Balkan Conference on Operational Research.

Birbas, T., Daskalaki, S., Housos, E. (1999). Rescheduling

Process of a School Timetable: The Case of the

Hellenic High Schools & Lyceums. Paper presented at

the Proc. of the 5th International Conference of the

Decision Sciences Institute, Athens, Greece.

Burke, E., Kingston, J., Jackson, K., Weare, R., . (1997).

Automated University Timetabling: The State of the

Art. The Computer Journal, 40(9), 565-571.

Christos Valouxis, E. H. (2003). Constraint programming

approach for school timetabling. Computers &

Operations Research, 30, 1555 – 1572.

Daskalaki, S., Birbas, T., & Housos, E. (2004). An integer

programming formulation for a case study in university

timetabling. European Journal of Operational Research,

153(1), 117-135. doi:10.1016/s0377-2217(03)00103-6

Edmund Kieran Burke, S. P. (2002). Recent research

directions in automated timetabling. European Journal

of Operational Research, 140, 266–280.

Glover, F. (1990). Tabu Search: A Tutorial. The Institute of

Management Sciences, 74-94.

Hillier, F. S. (2010). Introduction to Operations Research:

McGraw-Hill Higher Education; 9th edition.

Jardine, A. (2006). Learning and Teaching Scotland.

Sastrodjojo, L. K. (1998). Graph Partitioning Problems

Using Tabu Search.

Schaerf., A. (1996). Tabu Search Techniques for large

high-school timetabling problems. Tech.Rep. CS-R9611,

CWI, C.S. Dept., Amsterdam, NL.

Shao-wen, Z. H.-n. a. Z. (2014). Solving UTP Containing

Combining Classes using GA. International Journal of

u-and e-Service, Science and Technology, 7(4), 277-

286. doi:10.14257/ijunnesst.2014.7.4.25

Skocdopolova, V. (2012). Construction of time schedules

using integer goal programming. Proceedings of 30th

International Conference Mathematical Methods in

Economics.

Wren, A. (2005). Scheduling, timetabling and rostering —

A special relationship? Lecture Notes in Computer

Science, 1153, 46-75.

Zhipeng L üa, Jin-Kao Hao. (2001). Adaptive Tabu Search

for CourseTimetabling. European Journal of

Operational Research.

