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Abstract. We develop procedures that generate correlated catastrophic and yield loss logistics risks. Specifically, 

our procedures can easily generate random occurrence of the logistic losses for suppliers, who are subjected to 

both correlated catastrophic disruptions, i.e. correlated binary variables, and uncorrelated yield loss, i.e. truncated 

distributions. The exogenous inputs for the correlated catastrophic loss are the expected values and covariance 

matrix of the correlated disruption events. We introduce a simple algorithm for generating two and three correlated 

binary variables. A method to extend our correlated binary variable generating procedure to higher-dimensional 

case is also discussed. For yield loss, our algorithm uses the observed effective mean and variance from a data set, 

the truncation limits and the distribution generating the yield loss or effective yield. Our algorithm calculates the 

parameters for the truncated distributions with given effective mean and variance. This allows the practitioners to 

compare the simulation results for logistics yield loss across several distributions, while keeping the effective 

mean and variance consistent.     
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1. INTRODUCTION 
 

In recent decades, firms have experience substantial shifts 

in globalization and new technology evolution. International 

manufactures such as Toyota, Samsung and Apple have supply 

chains that span continents. Unfortunately, globalization and 

new technology not only bring the profit to the firm, they can 

also introduce risks to the firm’s supply chains (Craighead, 

2007; Helbing 2013), which create challenges in the 

management of their spreading supply chains. The logistics 

risk is one of the supply chain risks that is an inherent and 

growing part of the transportation process.  The primary 

concern is how to monitor, evaluate and possibly re-configure 

logistics risks in the supply chain based on a risk-benefit trade 

off.  This issue has become an important concern for 

globalized firms.   

Logistics risks can be categorized into two components:  

yield loss and catastrophic loss. In yield loss, logistics risk is a 

proportional loss caused by random events during shipping and 

handling. Whereas, catastrophic loss can be caused by natural 

disasters such as eastern Japan earthquake in 2011, or 

manmade disasters such as piracy in Africa, and the China milk 

powder scandals in 2008 and 2010 (Yuasa and Foster, 2011, 

ISS, 2013,). Sometimes a political event can also cause 

production breakdowns, e.g. the Arab spring uprising (Helbing, 

2013). In the case of the eastern Japan earthquake, Toyota 

experienced a worldwide production shutdown. In the case of 

the China milk powder scandal, many Taiwanese food 

manufacturers were forced to recall and destroy their products 

that contained the Chinese milk powder (USA Today, 2008). 

All these events impact not just the production location, but 

also spread more broadly and may have a greater impact on the 

supply chain than anyone might have predicted.  

While random yield loss might primarily depend on a 

supplier’s ability to manage their logistics, catastrophic loss 

might be dependent both on both the supplier and a secondary 

factor (e.g., Chinese milk powder scandal or the Arab spring 

uprising). Catastrophic loss of this nature represents a major 

disturbance in the supply chain that is best represented by a 

single perturbation. Random perturbations of this nature 

behave like Bernoulli random variables.  Random yield loss 

and catastrophic loss should both be considered in the 



 
 

 

 

supplier’s risk management strategy. To address the need of 

easily generating both logistics risks, we first need to be able 

to generate correlated binary random variables that can 

represent the catastrophic risks and also be able generate the 

yield loss from distributions that are truncated at zero and one.  

In this project we assume firms have historical data or 

managerial insights concerning the expected probability for 

catastrophic loss events, the covariance matrix associated with 

these catastrophic losses, and the mean, variance and type of 

the distribution of the random yield loss. For the catastrophic 

losses, a method allowing for an unstructured form of the 

covariance matrix is developed. However, not all solutions are 

feasible given the specified mean vector and covariance matrix. 

In addition, the method doesn’t require the managers to 

estimate the parameters for yield loss distribution by truncated 

distribution estimation. Furthermore, constraints for the 

solution space of such distribution increase exponentially as 

the number of supplier increases. Thus, the chance of a given 

mean vector and covariance structure producing a feasible 

solution is very unlikely when dimensionality exceeds three 

(e.g., the number of supplier exceeds three).  

Instead of pursuing a method that generates high-

dimensional correlated-binary random variables, development 

focused on a method that can generate correlated binary 

random variables up to dimension 3, while preserving the 

specified mean vector and covariance matrix. The method 

developed is simple to implement and, unlike the other 

approximate method, it preserves the exact covariance 

structure, if such distribution exists. We also briefly discuss 

how to extend our method to the high-dimensional binary 

distribution.  

For the logistics yield loss, a procedure is developed to 

generate the random yield loss based on several commonly 

used distributions, namely, the normal, lognormal, gamma and 

Weibull. In order to get the proper yield loss, which is between 

zero and one, we have to use the corresponding truncated 

distributions. A simple algorithm is proposed to convert the 

observed mean and variance to the parameter for a specific 

distribution. The algorithm generating the truncated 

distribution is abounded, (see Nadarajah and Kotz, 2006), 

however, up to best of our knowledge, a simple method that 

can calculate the parameters of the truncated distribution based 

on mean and variance of the real data is not well addressed.  

The proposed algorithm can serve as a simulation method 

for comparison risk management alternatives. In many cases, 

risk managers have some idea about the underlying yield loss 

distribution but cannot be certain of the true underlying 

distribution. By implementing the proposed algorithm, 

simulation results for different forms of logistics yield loss can 

help risk managers better understand the consequences 

associated with logistics risks. In fact, if we specified the yield 

loss distribution and solve its parameters with respect to the 

observed mean and variance, we might or might not able to 

find a reasonable solution. This fact can also help the manager 

to examine their presumptions. For example, we found that the 

normal distribution might not be a good underlying assumption 

when the yield loss has a fat tile. After both of the catastrophic 

and yield losses are generated, we can use the data set to 

numerically evaluate a given supply chain risk management 

model. Since our model is rather simple the solution time is 

fairly short, we can use this simple method to conduct an 

extensive sensitivity analysis.   

The remainder of this project is structured as follows: 

Section 2 reviews the relevant literature. Section 3 introduces 

the modeling framework for both catastrophic loss and the 

yield loss. Section 3 provides the details of the algorithm for 

implementation of correlated binary variables. Section 4 

summarized simulation results for both logistics disruptions 

and yield loss risks based on given value of effective mean and 

variance-covariance structures. Section 5 summarize the 

results of this study.   

 

2. LITERATURE REVIEW 
 

While the logistics risks are a well-studied topic in the 

area of supply chain risk management, there need for the 

implementation side of the problem. Simulation models and 

sensitivity analysis are powerful tools for risk management, 

but users face the problem of how to construct high quality 

input data for logistics risks. In this project we try to address 

this question by proposing a solution method that can generate 

both correlated catastrophic yield loss and independent yield 

losses.  

There are two major approaches to randomly generating 

correlated binary variables.  The first approach is to generate 

the variables with a specific correlation structure, while the 

second is to use another distribution to approximate the 

correlation structure of the binary variables. Lee (1993), 

addresses both approaches are but does not consider the 

covariance structure. Emrich and Piedmonte (1991) propose a 

method that uses a multivariate continuous distribution to 

approximate the correlated binary distribution. While their 

method explicitly considers both mean vector and covariance 

structure of the variables, the solution doesn’t preserve the 

exact covariance structure. Lunn and Davies (1998) provide a 

simple algorithm that can be applied to some special forms of 

the covariance matrix. However, their method cannot handle 

negatively correlated binary variables. Oman and Zucker 

(2001) introduce a simple method to generate correlated binary 

variables that have a specific type of covariance structure, 

namely AR(1), MA (1) and intraclass correlation. However, 

their method only applies when all the element of covariance 

matrix is positive. Oman (2009) extended Oman and Zucker’s 

(2001) work by modified the algorithm so that it can generate 

the negatively correlated binary variables. However, Oman 

(2009) has two drawbacks, first the focus remains on AR(1), 



 
 

 

 

MA (1) and intraclass correlation covariance matrices and 

second, the range of feasible correlation values are restrictive 

and decreases as the number of random variables increases.  

A major drawback to the generation of any correlated 

binary random variables with dimensions greater than two is 

that one cannot guarantee that the correlation structure is 

maintained. Chaganty and Joe (2006) studied the necessary 

and sufficient conditions for the existence of a multivariate 

binary distribution for a given the mean vector and correlation 

structure. They also compare their method, the three methods 

already discussed and the method introduced by Emrich and 

Piedmonte (1991), Qaqish (2003), and Park et al. (1996).  

Park et al (1996) propose an algorithm that to generate the 

correlated binary variables when the variables are positively 

correlated. Unlike Park et al (1996), Qaqish’s (2003) method 

can generate correlated binary random variables with unequal 

means and negative correlated binary variables. However, the 

method doesn’t allow high correlation (e.g., correlation > 0.55), 

even in the relatively simple 3-dimensional case. The same 

observation can be found in Chaganty and Joe (2004). The 

authors also stats that when the number of binary variables 

increases, the solution space of feasible covariance matrices 

gradually decreases. Thus, for many, if not most cases, the 

generation of correlated binary random variables is not feasible. 

In the other hand, the logistics yield loss due to careless 

handling, demand resulting from the switch between 

transportation methods or other causes are independent in 

natural. In addition to the independency, the logistics yield loss 

has lower and upper limits, zero and one, respectively. Many 

of researchers has develop a truncated distribution to generate 

the random value for normal, lognormal, gamma, and Weibull, 

but the parameters of original distribution is required 

(Philippe,1997; Craighead, 2007). We can also estimate the 

parameters from the data if we know the underlying 

distribution. (see Chapman, 1953; Amemiya, 1973; Jawitz, 

2004) 

We have note that the proper truncation is very important 

in the simulation study. Fu and Noche (2012) study how the 

truncation of logistics yield distribution influences the final 

result of a shipment consolidation model. Savenkov (2009) 

also demonstrate the importance of properly truncated 

distribution to a simulation of Wind or Wave energy capacity.  

They choose to model the logistics yield loss with the Weibull 

distribution. They find that even the simulated data from 

truncated and un-truncated Weibull are not very different for 

the first glance. The resulting shipment consolidation decision 

is very different between these two distributions. Thus, for the 

distributions that are studied by the pervious literature in the 

area of logistics yield loss we develop the explicit procedure 

(Yano and Lee 1995; Tomlin 2006). 

To develop a simple algorithm that takes effective mean 

and variance and search for the parameter(s) for a specific 

distribution, we need to derive the equation for first two 

moments for the truncated. After we obtain the first two 

moments we can solve 2-variable system non-linear equations 

for parameters. There are various researches have study the 

moments for the truncated distribution. This type of moments 

also referred as incomplete moments or partial moments. The 

early work of partial moments study can be date back to 

Winkler et al. (1972). The authors derive the partial moments 

for the Pearson family, i.e. beta, gamma, chi-square, normal, 

and student t. More recently, Philippe (1997) study the right 

and left truncated gamma and find when the upper limit is 

exactly 1, the truncated distribution can be rewrite as a mixture 

of beta distribution. The author introduces some useful insight 

of how to efficiently generate this type of right truncated 

gamma distribution but doesn’t study the relationship between 

the effective mean and variance and un-truncated distribution’s 

mean and variance. In this project, our solutions mainly 

following the incomplete movements that are derived by 

Jawitz (2004). Jawitz (2004) derives the incomplete moment 

for normal, tree-parameter lognormal, lognormal, and Weibull.  

This study,  

(1) creates a simple algorithm to generate the correlated 

binary variables.  

(2) provides a simple algorithm that takes effective 

mean and variance and generate the random variables from 

specified distribution. 

(3) discusses when and why to use our algorithm or 

other algorithms.  

(4) gives a general guideline of implement the different 

yield loss distribution by effective mean and variance. 

 

3. MODEL FORMULATIONS  
 

In this section, we formulate the model for the correlated 

disruption risks and the logistics yield loss distributions. For 

the correlated binary variables, there are a set of constraints 

that associate with the feasible solution for a given covariance 

structure. We explicitly state these constrains and propose a 

solution algorithm to find the necessary parameters for 

generating occurrence of disruptions. For the logistics yield 

loss, we derived the explicit formula to convert the effective 

mean and variance to the parameters in truncated distributions. 

A solution algorithm is proposed in the end of the section.  

 
3.1 Correlated Binary Variables 

 

The method proposed for the generation of correlated 

binary observations is based on the solution to a system of 

linear equations, but is limited to a dimension of at most three 

binary random variables. Let   denote an n dimensional row 

vector of possible binary outcomes and   denote the 

probability of event.  In the case of n = 2, can take on the 

possible outcomes of {(1,1), (1,0), (0,1) and (0,0)}, where 1 

denotes success and 0 denotes failure. Generating correlated 



 
 

 

 

binary data requires knowledge of the outcome probabilities. 

Computing the outcome probabilities requires knowledge of 

the desired proportions for each of the random variables, along 

with the associated the covariance structure between the 

random variables. The number of possible outcomes for an n 

dimensional binary row vector is 2n. Thus, as the number of 

correlated binary variables increases, the number of possible 

outcome and associated probabilities increases exponentially. 

To determine the outcome probabilities requires solving a 

system of n(n + 1)/2 linear equations, along with the condition 

that the sum of the outcome probabilities sum to 1.0. These 

equations consist of relating the desired proportions and 

covariance for the binary variables to the outcome proportions 

(n and n(n – 1)/ 2 equations, respectively). However, this 

approach does not guarantee that the solution of the linear 

system is unique.  

 

3.1.1 Generating 2-Dimensional Correlated Binary 
Variables  

 

Letting π denote the desired mean vector and the Σ desired 

covariance structure, then for n = 2 binary variables the 

following relationships between the desired mean and 

covariance structures and the outcome probabilities are easily 

established:   
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The covariance matrix of the binary variables is the 

following: 

  ' ' ' ' ' 'p pY D Y Y P Y P Y D Y               (4) 

' ' 'pY D Y                      (5) 

By definition  2 1i i i     , thus there is no need to 

specify the variance associated with each binary random 

variable.  The system of equations needed to solve for the 

outcome probabilities is: 

1 4 2P P                     (6) 

2 4 3P P                     (7) 
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Given  ,     , the a unique solution for the outcome 

probabilities is  
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subject to 
1 2 3 4,  ,  ,  0P P P P  . 

Using the linear system defined above, the 
iP s can 

be solve for as a function of the inputs. To increase the speed 

solution of the algorithm it is suggested to first check for 

existence the desired set of binary variables by using the 

conditions derived by Joe (1997): 
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(2) 

If the desired set of binary variables exists and the vector of 

outcomes, P, is determined from the system of equations, then 

the following algorithm can be used to generate the binary 

variables: 

1. Generate a random number from U ~ Uniform [0,1] 

2. If U≦P1, let the resulting event be Y1 

Else if 
1 1 2P U P P   , let the resulting event be Y2 

Else if 
1 2 1 2 3P P U P P P     , let the resulting 

event be Y3 

Else let the resulting event to be Y4 

3. Repeat 1 and 2 until desired number of binary 

vectors are generated.   

So long as the conditions defined by Joe (1997) are met, 

the Pi s can be computed, and subsequently the binary variables 

with required covariance structure can be generated. 

 
3.1.2 Generating 3-Dimensional Correlated Binary 
Variables  

 

The outcome matrix, Y, the outcome probabilities and the 

relationship between the desired binomial proportions for the 

three dimensional case are: 
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(11) 

In addition, the relationship between the desired 

covariance matrix and the outcome matrix and outcome 

probabilities are given by ' ' 'pY D Y     .  The linear 

equations are obtained from these relationships: 

1 2 5 6 8P P P P    
                   (12) 

2 3 5 7 8P P P P    
                    (13) 

3 4 6 7 8P P P P    
                   (14) 



 
 

 

 

5 8 1 2 12P P                               (15) 

6 8 1 3 13P P     
                     (16) 

7 8 2 3 23P P                   (17) 

1 2 3 4 5 6 7 8 1P P P P P P P P                      (18) 

 

A unique solution for the Ps does not exist, but can be 

solved with respect to P8, and result in the following: 

1 1 2 1 2 12 3 13 1 3 23 2 3 81P P                       (19) 

2 1 12 1 2 13 1 3 8P P                    (20) 

3 2 12 1 2 23 2 3 8P P                    (21) 

4 3 13 1 3 23 2 3 8P P                       (22) 

5 12 1 2 8P P                           (23) 

6 13 1 3 8P P                           (24) 

7 23 2 3 8P P                          (25) 

The solution must satisfy the above constraints, 

which are functions of the covariance matrix and expected 

value vector. We note that all constrains are linear, thus the 

solution space is a convex hull. This implies that even though 

the solution space is decreasing the system equations can still 

be solved optimally.  
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7 8 2 3 1P P                            (27) 
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(30) 

 8 12 1 2 23 2 3 2P                            (31) 
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0 iP                                  (34) 

As can observed from the above equations the solution to 

the linear system of equations is not unique. From a practical 

point of view, we can set the probability of all binary variable 

to be positive, and one of the probability to be zero. We propose 

the user to solve the system equations using linear 

programming while minimizing P8.  

As stated in Chaganty and Joe (2006), the n-dimensional 

binary distribution has   inequalities on its solutions spaces. 

However, due to the fact that the number of constraints are 

increasing exponentially in number of variables, the solution 

rarely exists. Furthermore, even when the solution exists, only 

one pair of binary variables are significantly correlated, i.e. 

covariance greater than 0.1, while others are almost 

uncorrelated. Thus, we believe 3-dimensional binary 

distribution should be a practical and realistic subgroup size. 

For generating the correlated binary variables for dimensions 

of more than 3 we purpose a two-tier solution procedure. We 

suggest the risk managers conduct a simple clustering study or 

discrimination method to form subgroups within the supplier 

base. Then do the pair-wise correlated binary variable or tri-

variate binary variable. 

 

3.2 Logistic Yield Loss Distributions 
 

In this section we introduce a way to generate logistics 

yield loss from a distribution that has support [0, 1].  

Therefore, we have to develop a method to generate a random 

yield loss from a truncated distribution when only the effective 

mean and variance are given. We denote the truncation limits 

as an interval [a, b]. The default value of the truncation limits 

are [0, 1]. If the distribution has a feasible support, we also 

derive the effective mean and variance with right truncated 

distribution.  

In this project we use the partial moments derived by Ja

witz (2004), and generate the yield loss with the R-

package that developed by Nadarajah and Kotz (2006).  The 

yield loss distribution is usually left skewed and has significa

nt probability of a large loss. Thus, we recommend checking t

he kurtosis of the yield loss from observed data before solve f

or the parameters. In a numerical study we find that with a gi

ven mean and variance, either a unique solution is found, or n

o solution exists. The system of non-

linear equations presented in Table 2 can be solved by R-

package “nleqlv” developed by Haaselman (2014). For Matla

b, the nonlinear system equation can be solved by “fsovle” an

d the truncated distribution can be generate by the following 

procedure: (1) set pd = makedist (‘name of distribution’), (2) 

set t = truncated(pd, lower limit, upper limit), and (3) r = rand

om(t, number of rows, number of columns). Due to the spa

ce constrain the explicit truncated mean and variance for

 each distribution used in the simulation design are avail

able upon request to authors.  

 

3.2.1 Simulation Procedure  
 

 It is worth pointing out a few cautions in the 



 
 

 

 

implementation of the algorithm: (i) not every pair of effective 

mean and variance has a solution. (ii) The solution found by 

our function might not be unique, (iii) Normal distribution is 

not a very good distribution for the truncated logistics yield 

distribution, especially when these distributions represent the 

proportion of the actual receipts. (iv) Since the logistics yield 

loss is a left skewed distribution, for some naturally right 

skewed distributions such as gamma, lognormal, the effective 

mean shall be set at 1-(expected defect). That is the logistics 

effective yield in stand of yield loss should be generated. Now 

we provide a brief algorithm and code for both Matlab and R.  

Simulation Algorithm: 

Step 1: Input type of distribution, number of trials needed, 

the effective mean and variance as well as the truncation 

interval [a, b].  

Step 2: Check the skewness, if the data is left skewed set 

effective mean = 1- observed mean, otherwise set effective 

mean = observed mean. Set the effective variance = observed 

variance.  

Step 3: Use the effective mean and variance to solve for 

the parameters in un-truncated distribution. If the solution exist, 

set the solution as the starting point. If the solution doesn’t 

exist set the initial solution as [1, 1].  

Step 4: Solve the non-linear system equations given in 

Table 2 with “fsolve” in Matlab or package “nleqslv” in R.  

Step 5: If the solution exists but not unique pick the one 

with the largest location parameter. If the solution doesn’t exist 

go to step 6. Use the output solution to simulate the random 

yield loss for the specified distribution. Otherwise go to step 7. 

Step 6: Generate the random number from truncated 

distribution.  

Step 7: Display (‘Solution doesn’t exist.’). 

 
4. NUMERICAL STUDY  
 

4.1 Simulation Studies for Correlated 2- and 3-
demantional Binary Variables 
 

For the probabilities of the occurrence of each disruption, 

we define each of them to range from 0.1 to 0.9 in increments 

of size 0.1, and covariance ranges from –0.25 to 0.25 in 

increments of size of 0.05, excluding 0. We test 81×10 = 810 

combinations of mean vector and covariance matrices.  

Among these, 229 resulted in feasible solutions.  Table 1 

presents the feasible solutions under the conditions defined. 

 
Similarly, for the 3-demandtional case, we defined e-ach 

of three probabilities to range from 0.1 to 0.9 in increments of 

size 0.1, and covariance ranges from –0.25 to 0.25 in 

increments of size of 0.05, excluding 0. We try 129×84×50×50 

combinations of πis, σijs, σ13 and P8 that range from 0.00 to 0.25. 

The Figure 2 indicates the percentage of feasible solutions. As 

it shows, when the covariance between binary variables are 

small and the probability. The feasible solutions are clustering 

around the low covariance structure. This result is consistent 

with argument we made in section 3.1.2, the feasible variance 

and covariance structure for a set of correlated disruptions are 

not practical. Again for any correlated disruption risks that 

excess 3-demantional, we suggest the user to dissect the 

suppliers into several subgroups that consist of members less 

or equal to three. 

 

Figure 2: The plot for Percent Feasible Solutions in all 

Possible Simulation Trials 

 

4.2 Simulation Study for Logistic Yield Loss 
 

The simulation study for yield loss is conduct to 

demonstrate the proposed solution algorithm for converting 

effective mean and variance for the truncated distribution. 

While we drive all the exchange equations for the effective 

mean and variance for Normal, Lognormal, Gamma and 

Weibull with both one-tail and tow-trail truncated distributions, 

only the solution for two-tail truncated normal, one-tail 

lognormal and one-tail gamma are presented in the Table 1. 



 
 

 

 

More specifically, all distributions are truncated at [0,1]. Even 

though we try all the combination of effective mean and 

variance for Weibull distribution, the solution for feasible 

mean and variance for truncated Weibull does not exist for 

these instance.  It is worth noting that even though the 

expressions in Table 2 are not linear, the solution time using 

Matlab solver “fsolve” has never exceeded 1 minute.  

 

Figure 1: The Plot of Expected Value for Each Catastrophic 

Event and Correlation of Events 

 

Unfortunately, with the effective means given in Table 1, 

we are not able to find a feasible solution for Weibull 

distribution. That shows, if the observed logistic yield loss is 

fitted by Weibull distribution by any statistical software, the 

best strategy is to use the other distribution to approximate it. 

In the other side, a feasible solution might not be a 

reasonable solution. For example, the Gamma distribution with 

κ equals 604 and θ equals 0.00041 does not seems to be a 

rational choose for a logistic yield loss. The underlying 

distribution of that instance might be more likely to be normal.   

 

5. CONCLUSION 

 

Our approach to simulate the correlated catastrophic 

logistics risks is very simple and yields a solution range that is 

close to theoretical bounds. Our approach preserves the 

specified mean and covariance structure of the catastrophic 

loss, which is critical to the risk management. Our method is 

to use a more direct and simple method to explicitly model the 

variance and covariance structural of the correlated binary 

variables. In this project, we extend the model first proposed 

by Lee (1993) and add the conditions derived by Chaganty and 

Joe (2006). Our method with dimension less than three can 

take unequal variance and the wildest range of unstructured 

covariance matrix than the methods proposed by pervious 

literature (e.g. Emrich and Piedmonte, 1991; Park et al., 1996; 

Qaqish, 2003; Oman, 2009).  

We also propose an algorithm that takes the mean and variance 

of the real data and numerically solve for the parameters for 

logistics yield loss distributions. This approach allow the user 

to compare the results simulated from different distributions 

without go through complicated parameter estimation. Our 

method is best fit when the underlying distribution is not clear 

to the user and the user desire to compare the decision under 

different distribution assumptions. 
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Effective 
Truncated 

Normal 
Truncated 

Gamma 
Truncated 
Lognormal 

Effective 
Truncated 

Normal 

Truncated 

Gamma 
Truncated 

Lognormal 

μ σ μ σ κ θ m s μ σ μ σ κ θ m s 

0.75 0.01 0.75 0.01 604 0.00041 -0.672 -0.181 0.8 0.01 0.8 0.01 400 0.001 -0.778 -0.22 

0.76 0.02 0.76 0.02 144 0.002 -0.667 -0.286 0.8 0.02 0.8 0.02 100 0.002 -0.748 -0.338 

0.77 0.03 0.77 0.03 58.8 0.004 -0.659 -0.391 0.8 0.03 0.8 0.03 44.4 0.005 -0.717 -0.446 

0.78 0.04 0.78 0.04 30.2 0.007 -0.648 -0.503 0.8 0.04 0.8 0.04 25 0.008 -0.684 -0.552 

0.79 0.05 0.79 0.05 17.6 0.012 -0.634 -0.627 0.8 0.05 0.8 0.05 16 0.013 -0.65 -0.658 

0.8 0.06 0.8 0.06 11.1 0.018 -0.616 -0.767 0.8 0.06 0.8 0.06 11.1 0.018 -0.616 -0.767 

0.81 0.07 0.811 0.071 7.37 0.026 -0.594 -0.928 0.8 0.07 0.801 0.071 8.16 0.025 -0.581 -0.878 

0.82 0.08 0.824 0.084 5.06 0.036 -0.569 -1.115 0.8 0.08 0.802 0.082 6.25 0.032 -0.546 -0.993 

0.83 0.09 0.843 0.102 3.57 0.048 -0.539 -1.336 0.8 0.09 0.805 0.095 4.94 0.041 -0.511 -1.111 

0.84 0.1 0.879 0.128 2.56 0.063 -0.505 -1.600 0.8 0.1 0.81 0.11 4 0.05 -0.477 -1.233 

0.85 0.11 0.969 0.173 1.85 0.081 -0.465 -1.922 0.8 0.11 0.82 0.127 3.3 0.061 -0.442 -1.36 

0.86 0.12 1.308 0.278 1.35 0.104 -0.421 -2.320 0.8 0.12 0.837 0.148 2.77 0.072 -0.408 -1.491 

0.87 0.13 15.7 1.403 0.98 0.134 -0.371 -2.821 0.8 0.13 0.865 0.173 2.35 0.085 -0.374 -1.626 

0.88 0.14 16.23 1.425 0.7 0.174 -0.314 -3.467 0.8 0.14 0.911 0.205 2.01 0.1 -0.341 -1.766 

0.89 0.15 24.97 1.779 0.49 0.234 -0.252 -4.320 0.8 0.15 0.99 0.246 1.73 0.116 -0.308 -1.912 

0.9 0.16 35.9 2.142 0.32 0.337 -0.183 -5.482 0.8 0.16 1.133 0.304 1.49 0.136 -0.276 -2.062 

                

        Table 1: The Distribution Parameters According to the Effective Mean and Standard Deviation 
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