
An ILS Algorithm for the Team Orienteering Problem with

Variable Profit

Aldy Gunawan †

School of Information Systems

Singapore Management University, Singapore

Tel: (+65) 6808-5227, Email: aldygunawan@smu.edu.sg

Kien Ming Ng

Department of Industrial and Systems Engineering

National University of Singapore, Singapore

Tel: (+65) 6516-5541, Email: isenkm@nus.edu.sg

Graham Kendall

School of Computer Science

The University of Nottingham, Malaysia Campus

Email: Graham.Kendall@nottingham.edu.my

Junhan Lai

Department of Industrial and Systems Engineering

National University of Singapore, Singapore

Email: a0097547@u.nus.edu

Abstract. The Orienteering Problem (OP) is a routing problem that has numerous applications in various fields such as

logistics and tourism. The objective is to determine a subset of nodes to visit so that the total collected score is maximized

and a given time budget is not exceeded. The extensive application of OP has led to many different variants, including the

Team Orienteering Problem (TOP) and the Orienteering Problem with Time Windows (OPTW). In this paper, the TOP with

Variable Profits (TOPVP) is studied. The main characteristic of the TOPVP is that the amount of score collected from a

particular node depends on the duration of stay on that node. We first propose a mathematical model for the TOPVP. We use

the AIMMS Outer Approximation (AOA) algorithm to solve modified benchmark instances. We then propose a simple

algorithm based on Iterated Local Search in order to solve some modified benchmark instances. Finally, we conclude that

ILS is able to produce results which are comparable to those solved by the AOA algorithm.

Keywords: Orienteering problem, variable profit, mathematical model, iterated local search

1. INTRODUCTION

The Orienteering Problem (OP) is a multi-level

optimization problem that has numerous applications in

various fields such as logistics (Golden et al., 1987) and

tourism (Souffriau et al., 2008). Vansteenwegen et al. (2011)

formally defines the OP as a combination of node selection and

determining the shortest Hamiltonian path between the

selected nodes. The main objective is to determine a path,

limited by the total travel time or distance, which visits some

nodes in order to maximize the collected score from visited

nodes.

The Team Orienteering Problem (TOP) is an extension of

the OP with multiple paths. Each path is limited by the total

travel time. The objective is to maximize the total collected

score from all paths. Some recent works related to the TOP can

be found in Dang et al. (2013), Ferreira et al. (2014) and Ke et

al. (2015). There are many different variants of the OP, such as

the (Team) Orienteering Problem with Time Windows

((T)OPTW), the Time Dependent Orienteering Problem

(TDOP) and so on. Vansteenwegen et al. (2011) provide a

comprehensive survey about the OP and its variants up to the

year 2009. Gunawan et al. (2016) extended the survey by

focusing on the most recent works of the OP and its variants.

mailto:isenkm@nus.edu.sg
mailto:Graham.Kendall@nottingham.edu

One of the recent variants of the OP is the Orienteering

Problem with Variable Profits (OPVP), as presented by

Erdoğan and Laporte (2013). In the OPVP, a visit at a particular

node can be extended in order to collect more scores. In order

to replicate such a situation, Erdoğan and Laporte (2013)

introduced discrete passes, where each pass on a particular

node represents a constant time incurred. The more passes the

visit made, the longer the duration of stay is.

In this paper, we introduce a new variant of the OPVP,

namely the Team OP with Variable Profits (TOPVP). In the

context of logistic applications, a path can be referred as a

vehicle that needs to visit certain number of nodes and profits

from nodes are considered as collected scores. The TOPVP

extends the OPVP by considering multiple paths/vehicles.

Therefore the total collected scores from all paths is the main

objective of the TOPVP.

We introduce a mathematical model for the TOPVP. First,

we solve the mathematical model by the AIMMS Outer

Approximation algorithm (AOA) solver. Due to the limitation

of solving large instances, we then propose a heuristic which

is based on Iterated Local Search (ILS). We conclude that the

proposed algorithm performs well with short computation

times.

The remainder of this paper is as follows. In Section 2, a

literature review of the OP including its variants is provided.

The problem description including the mathematical model is

detailed in Section 3. In Section 4, the proposed algorithms are

described. Section 5 reports numerical experiments that were

performed on benchmark instances. Finally, in Section 6, we

summarize the main achievements and future works.

2. LITERATURE REVIEW

Tsiligirides (1984) first defined the standard Orienteering

Problem (OP). Important assumptions include perfect

knowledge over the score specified for each node and the time

incurred for the edges. In addition, each node can only be

visited once except the start and the end nodes which

commonly refer to the same node. In this paper, we regard the

start and end nodes as the same node.

One characteristic of the classical OP is that it is

prohibited from staying at any node during a visit; the full

profit is collected upon reaching the node. In other words, the

time spent in a particular node is assumed to be zero. However,

in certain situations especially related to logistics problems, the

time spent in a particular node for a vehicle to unload the

delivery has to be considered. This problem is referred to as

the OPVP (Erdoğan & Laporte, 2013).

In the OPVP, the vehicle is permitted to prolong the

duration of stay. In this case, each node is assigned with a profit

that can potentially be collected where the actual collected

amount depends on the time spent on the node. The vehicle is

not compelled to collect the full profit. Erdoğan and Laporte

(2013) introduce discrete passes to represent the vehicle’s

duration of stay at a particular node for the discrete model of

OPVP. More specifically, making a pass means staying a

predefined amount of time at a node. The amount of time spent

on a node is additive according to the number of passes made.

The profit collected over the duration of stay is described using

growth/decay functions, dictating the rate of increase/decrease

of profit collected per pass made. The rest of the conditions for

OPVP remain identical to the OP. Hence, making multiple

passes on a node does not equate to visiting the node multiple

times since each node can only be visited once.

A unified branch-and-cut algorithm for OPVP was

proposed as the solution approach, using adapted inequalities

from the Covering Tour Problem (CTP) formulation

(Gendreau, Laporte, & Semet, 1997). Since no prior research

was done, there were no benchmark instances available for

OPVP. As such, Erdoğan and Laporte (2013) modified the

Travelling Salesman Problem (TSP) test instances from

TSPLIB. Even though optimality was achieved for most of the

test instances, excessive computation times were required for

the larger instances.

Considering the limited literature available for the OPVP,

reviewing solution approaches to TOP may provide deeper

insights into the development of heuristics for TOPVP. This is

because TOP and TOPVP share largely similar characteristics

with the exception of the variable profits component.

Chao et al.’s (1996a) proposed a heuristic that involved

neither searching techniques nor acceptance of infeasible

intermediate solutions. Instead, Chao et al.’s heuristic involves

two phases: initialization and improvement. In the

initialization phase, a feasible solution is constructed using

vertices that are furthest from the depot. Additional paths

involving vertices not in the initial feasible solution are

constructed in this phase as well. The improvement phase

consists of iterating the sequence of two-point exchange, one-

point movement and 2-Opt until terminating conditions are

met.

Boussier, Feillet and Gendreau (2007) proposed a Branch

& Price algorithm using column generation to solve the relaxed

master problem and then using the branch-and-bound method

to obtain an integer solution. Archetti, Hertz and Speranza

(2007) proposed four comparable metaheuristics that are

variants of the tabu search and variable neighbourhood search

heuristics. The metaheuristics first generate an initial feasible

solution using the initialization phase from Chao et al.’s (1996a)

heuristic.

According to Vansteenwegen et al.’s survey (2011),

Archetti et al.’s proposed metaheuristics are one of the leading

algorithms for TOP in terms of achieving best known solution,

average gap to best known solution and average computation

time. In addition, Vansteenwegen et al. noted that high-

performing algorithms are inclined to construct feasible paths

for non-included vertices, allow infeasible solutions during the

search procedure as well as alternate between objective value

increasing and travel time decreasing operators.

Considering that the solution approaches to TOP are well

researched as well as able to produce high-performing and

credible results, it is reasonable to adapt solution approaches

to TOP for TOPVP. Notably, both Archetti et al.’s and Chao et

al.’s heuristics involve elements of iterated local search (ILS)

method, a method that can be easily implemented. Thus, it is

possible to use the ILS method as a solution approach to

TOPVP if the operators can be adapted to accommodate the

variable profit component.

3. Team Orienteering Problem with Variable Profit

3.1 Problem Description

The TOPVP can be described on an undirected graph G =

(N, E), where N = {0, 1, …, n} is the set of nodes and E is the

set of edges. Nodes 1 to n are potential nodes to visit, whereas

node 0 corresponds to the start and end nodes of the paths.

Each node 𝑖 ∈ 𝑁 is designed with a score Si as well as an

associated collection parameter 𝛼𝑖 ∈ [0,1] . The amount of

score collected at each node i depends on the duration of stay

at that node and its collection parameter 𝛼𝑖 . The duration of

stay at nodes is represented by discrete passes. Each pass made

at node i incurs a constant time cost 𝑟𝑖 . The collection

parameter is used to model the decay of the collected score

where each pass made at a node allows collecting 100 𝛼𝑖

percent of the remaining score.

A travel time tij is associated with every edge (𝑖, 𝑗) ∈ 𝐸.

Thus, the total travel time on a particular path is contributed by

the travel time across edges as well as the number of passes

made at visited nodes. The objective of the TOPVP is to

determine a set of paths P such that the collected score by all

paths is maximized. The amount of time required to traverse

between two nodes (𝑖, 𝑗) is assumed to be symmetrical (tij =

tji). In addition, the travel time associated with every edge

satisfies the triangle inequality. Standard constraints applied to

the OP (Vansteenwegen et al., 2011) are also applied in the

TOPVP, such as each node can only be visited at most once

except the start node which is the same with the end node, each

path has to be started and ended at the start and end nodes,

respectively, and each path is limited by the time budget T.

3.2 Mathematical Model

The formulation for the TOPVP is extended from the

OPVP discrete model (Erdoğan and Laporte, 2013). The

theoretical maximum number of passes at node i is denoted

as 𝑚𝑖 (≤ ⌊(𝐿 − 2𝑡0𝑖)/𝑟𝑖⌋) . Below is the list of decision

variables for the mathematical model.

Decision Variables:

xijp = 1, if the vehicle traverses edge (𝑖, 𝑗) ∈ 𝐸 on path p; 0,

otherwise

yilp = 1, if l or more passes are performed on node i on path p;

0, otherwise

Np = number of nodes visited by path p; including node 0

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑆𝑖𝑖∈V\{0} ∑ 𝛼𝑖(1 − 𝛼𝑖)𝑙−1 𝑦𝑖𝑙𝑝𝑙∈{1,…,𝑚𝑖} (1)

Subject to:

∑ 𝑥0𝑗𝑝𝑗:(𝑖,𝑗)∈𝐸,𝑝∈𝑃 = ∑ 𝑥𝑖0𝑝𝑖:(𝑖,𝑗)∈𝐸,𝑝∈𝑃 = |𝑃| (2)

∑ 𝑦𝑖1𝑝𝑝∈𝑃 ≤ 1, (𝑖 ∈ 𝑉\{0}) (3)

∑ 𝑥𝑖𝑘𝑝(𝑖,𝑘)∈𝐸,𝑘≠0 = ∑ 𝑥𝑘𝑗𝑝(𝑘,𝑗)∈𝐸,𝑘≠0 = 𝑦𝑘1𝑝, (𝑝 ∈ 𝑃, 𝑖 ≠ 𝑗) (4)

𝑦𝑖𝑙𝑝 ≤ 𝑦𝑖,𝑙−1,𝑝, (𝑖 ∈ 𝑉\{0}, 𝑙 ∈ {2, … , 𝑚𝑖}, 𝑝 ∈ 𝑃) (5)

𝑦𝑖(𝑚𝑖+1)𝑝 = 0, (𝑖 ∈ 𝑉\{0}, 𝑝 ∈ 𝑃) (6)

∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑝(𝑖,𝑗)∈𝐸,𝑖≠𝑗 + ∑ 𝑟𝑖𝑖∈𝑉 ∑ 𝑦𝑖𝑙𝑝𝑙∈{1,…,𝑚𝑖} ≤ 𝑇, (𝑝 ∈ 𝑃) (7)

2 ≤ 𝑢𝑖𝑝 ≤ 𝑁𝑝, (𝑖 ∈ 𝑉\{0}, 𝑝 ∈ 𝑃) (8)

𝑢𝑖𝑝 − 𝑢𝑗𝑝 + 1 ≤ (𝑁𝑝 − 1)(1 − 𝑥𝑖𝑗𝑝), (𝑖, 𝑗 ∈ 𝑉\{0}, 𝑝 ∈ 𝑃) (9)

𝑦01𝑝 = 0, (𝑝 ∈ 𝑃) (10)

𝑦𝑖𝑙𝑝 = 0 𝑜𝑟 1, (𝑖 ∈ 𝑉\{0}, 𝑙 ∈ {1, … , 𝑚𝑖}, 𝑝 ∈ 𝑃) (11)

𝑥𝑖𝑗𝑝 = 0 𝑜𝑟 1, ((𝑖, 𝑗) ∈ 𝐸, 𝑝 ∈ 𝑃) (12)

The objective function (1) is to maximize the total

collected scores from visited nodes from all paths. It is worth

noting that the total profit collected from each node will then

be 𝑆𝑖 ∑ 𝛼𝑖(1 − 𝛼𝑖)
𝑙−1 𝑦𝑖𝑙𝑝𝑙∈{1,…,𝑚𝑖} resembling a finite

geometric series. Constraints (2) designate node 0 as the start

and end nodes for each path. Constraints (3) ensure that across

all paths, each node can only be visited at most once with the

exception of node 0. Constraints (4) ensure the connectivity

between the edges and the node. In other words, each node that

is visited must be the origin and the destination for a pair of

edges.

Constraints (5) ensure that in order to make further passes

at a particular node, the preceding pass must be made.

Constraints (6) ensure that the paths do not exceed the

maximum allowable passes of the visited nodes. If the

maximum allowable passes of all nodes are not limited by

exogenous reasons, then constraints (6) can be relaxed.

Constraints (7) ensure that the total time allocated does not

exceed the time budget T for every path. Since both edge costs

and time incurred from making passes at nodes are subtracted

from the total time allocated, costs and time are treated as

synonymous in this paper. Constraints (8) and (9) prevent the

forming of subtours. Constraints (10) ensure that no passes are

made at node 0. Constraints (11) and (12) are integer

constraints.

Erdoğan and Laporte (2013) noted that in the case where

𝑎𝑖 = 1 for all 𝑖 ∈ 𝑉\{0} , the OPVP is reduced into a

Selective Travelling Salesman Problem (STSP) (Laporte &

Martello, 1990). Since STSP is NP-Hard and is a special case

of OPVP, by extension, TOPVP is NP-Hard. This implies that

an exact solution algorithm might be beyond computational

reach and that attempting to obtain a sub-optimal solution

through heuristics will be more appropriate.

4. ALGORITHMS

We propose two different approaches to solve the TOPVP:

1) the AIMMS Outer Approximation algorithm (AOA) and 2)

an Iterated Local Search algorithm. Each of these approaches

will be explained in the following sub-sections.

4.1 The Outer Approximation algorithm

In order to solve the proposed mathematical model in

Section 3.2, we first use a commercial solver, AIMMS. Since

the mathematical model is considered as a Mixed Integer Non

Linear Problem (MINLP) model, we therefore use the AIMMS

Outer Approximation algorithm (AOA) which solves an

alternating sequence of Non Linear Programming (NLP) and

Mixed Integer Programming (MIP) models (Hunting, 2011).

The flow diagram for the AOA algorithm is given in

Figure 1. The MINLP is first solved as a relaxed NLP and the

linearization is then performed around the optimal solution.

Next, the resulting linear constraints are added to the model.

We refer the new linear model as the master MIP problem.

Subsequently, the master MIP problem is solved and the

integer part of the resulting solution is temporarily fixed. The

fixed integer part is then translated back to the relaxed NLP.

The linearization and integer fixing process is repeated until

the termination condition (e.g. iteration limit) is met. The in-

built solvers that AIMMS used to solve the TOPVP are

CONOPT 3.14V and CPLEX 12.6.2.

Figure 1: The Outer Approximation algorithm (Hunting, 2011).

4.2 Iterated Local Search

The limitation of the first algorithm is the capability to

solve large instances within short computation times. We then

propose the second algorithm which is mainly based on ILS,

as shown in Figure 2 (Chao et al. 1996a). In this sub-section,

an overview of the algorithm structure will first be presented

followed by more detailed elaboration of the different

operators used in the algorithm.

Figure 2: Iterated Local Search.

4.2.1 Overview of the Algorithm Structure

In short, the proposed algorithm for TOPVP follows the

basic principle of an iterated local search (ILS) method. The

ILS is defined as a local search method that iteratively applies

local search to perturbations of the current locally optimal

solution (Stützle, 2006). The four basic requirements of the

ILS are 1) an initial solution, 2) a perturbation guideline to

deconstruct the locally optimal solution, 3) a local search to

seek improvements in the solution and 4) an acceptance

criterion to determine from which solution the local search is

continued.

Similar to Chao et al.’s (1996a) algorithm, the proposed

ILS consists of an initialization, two improvement and two re-

initialization steps. The initialization step constructs the initial

feasible solution. The two improvement steps represent the

local search method, seeking possible improvements in the

current solution. The two re-initialization steps perturb the

locally optimal solution for the next iteration of improvement.

The acceptance criterion used in ILS is based on an

optimization algorithm called Record-to-Record Travel (RRT)

(Dueck, 1993).
The RRT is used in ILS to determine if a new

configuration of the solution should be accepted. In the RRT,

the best solution obtained thus far is set as the record. Any

configuration found that is an improvement over record is set

as the new record. The proposed ILS attempts to seek further

improvement using the new configuration. In addition, a

constant percentage of the record is set as the acceptance

threshold called deviation. Whenever the algorithm fails to

find a configuration that is an improvement, the best

configuration that deteriorates the solution within the deviation

will be chosen to be worked on.

The sequence of events to be executed for ILS is as

follows:

Step 1 (Initialization Phase): An initial solution is constructed

using the initialization process which is discussed in Section

4.2.2. The objective value of the initial solution is set as the

record while the deviation is set at 5% of the record.

Step 2 (Improvement Phase): The improvement phase

consists of two loops; the inner loop will be referred to as I

loop while the outer loop will be referred to as K loop. In I loop,

a local search for improvement is conducted. The local search

is a sequence of operators consisting of two-point exchange,

one-point movement followed by 2-opt. All operators would

be discussed in Section 4.2.3. At the end of the sequence, if a

solution with higher objective value is obtained, then record

and deviation are updated. The local search is iterated until no

exchanges or movement of vertices are performed, ending I

loop.

Note that it is possible for exchanges or movement that result

in no improvement in objective value. In K loop, re-

initialization 1 (Section 4.2.4) is performed to perturb the

solution obtained from I loop. The new solution will then be

iterated through I loop again. Subsequent re-initialization 1

perturbs the solution according to how many times re-

initialization 1 was performed. A global variable k is used to

track the number of re-initialization 1 steps performed. The

terminating condition for K loop is when no new record is

achieved for 5 consecutive iterations.

Step 3 (Re-initialization 2): Perform re-initialization 2

(Section 4.2.4) using the last k value of Step 2. The deviation

is also set to 2.5% of the current record.

Step 4 (Improvement Phase 2): The 2nd improvement phase

follows the same sequence of events as Step 2 (1st

improvement phase) with the exception of the deviation used

in RRT exchanges and movements.

4.2.2 Initialization Phase

In the initialization phase, we first remove nodes which

cannot be theoretically visited given the time budget. Any

vertex 𝑖 for which 2𝑡𝑖0+ 𝑟𝑖 > 𝑇 is removed. This is because the

vehicles have to return to the depot and any vehicle that visits

these nodes will always violate the time budget allocated. The

remaining nodes are classified as feasible nodes.

The next process is to construct |P| paths. The main idea

is to assign as many nodes as possible without violating the

time budget (Chao et al., 1996 and Archetti et al., 2007). Due

to the discrete passes, it is required to decide between

increasing the passes made on nodes currently in a particular

path of interest or inserting an additional vertex that is not in

that path.

The |𝑃| paths with the highest profit collected constitute

the solution and will be referred to as the set of paths 𝑃𝑇𝑂𝑃𝑉𝑃.

Thus, the sum of the profit collected from each path in 𝑃𝑇𝑂𝑃𝑉𝑃

is the objective value. The set of remaining paths will be

referred to as 𝑃𝑁𝑇𝑂𝑃𝑉𝑃.

4.2.3 Improvement Phase

Using the initial solution generated in the initialization

phase, we then improve the solution by performing three

different operators of Iterated Local Search.

Two-point exchange

The objective of the two-point exchange is to seek possible

improvement in the solution by exchanging nodes from the

paths in 𝑃𝑇𝑂𝑃𝑉𝑃 with nodes from the paths in 𝑃𝑁𝑇𝑂𝑃𝑉𝑃.

One-point movement

One-point movement is the operator used after two-point

exchange in the local search component. One-point movement

attempts to improve the solution by relocating nodes from one

path to another. In particular, every feasible node is checked

for possible movement one at a time. The candidate node is

inserted into the designated path using the cheapest insertion

heuristic.

2-opt

The 2-opt technique is used to reduce the total edge cost

incurred by the paths in 𝑃𝑇𝑂𝑃𝑉𝑃 and 𝑃𝑁𝑇𝑂𝑃𝑉𝑃. By doing so, there

may be opportunities for more exchanges and movements in

later iterations. There should be no improvement in the

objective value due to 2-opt.

Note that as mentioned earlier in the overview of the

structure of our proposed algorithm, two parameters, record

and deviation, are updated only after a sequence of two-point

exchange, one-point movement and 2-opt is completed. If no

new record is found after 5 consecutive iterations, then the

terminating condition for the corresponding improvement

phase has been achieved. Otherwise, the solution obtained will

be perturbed using re-initialization 1.

4.2.4 Re-initialization Phase

Re-initialization 1

To avoid being stuck in a local optimum, re-initialization 1 is

used to prepare the solution for the next iteration of local

search. In this phase, nodes with the lowest collected scores are

removed from all paths in 𝑃𝑇𝑂𝑃𝑉𝑃. The number of nodes

removed from each path is determined by a variable 𝑘. As the

iteration count for the local search increases, the value of 𝑘 is

increased. In other words, more vertices are removed from

each path in 𝑃𝑇𝑂𝑃𝑉𝑃 in subsequent re-initialization 1 steps.

Re-initialization 2

In re-initialization 2, the nodes are removed differently from

re-initialization 1. Instead of removing nodes with the lowest

collected score, nodes with the smallest ratio of collected score

to insertion cost are removed from each path in 𝑃𝑇𝑂𝑃𝑉𝑃. Note

that throughout the TOPVP heuristic, re-initialization 2 will

only be performed once.

5. COMPUTATIONAL RESULTS

Since there are no benchmark instances for the TOPVP,

we adopt the same scheme proposed by Erdoğan and Laporte

(2013) to generate benchmark OPVP instances using selected

TSP test instances. Those instances are kroA100, kroB100,

kroC100, kroA200 and kroB200 which are obtained from the

TSPLIB. The OPVP test instances, generated from TSP test

instances, are then used to generate the TOPVP test instances.

This is done by taking the 1-vehicle OPVP and dividing the

time budget by the number of vehicles/paths in TOPVP (Chao

et al., 1996).

In order to verify and justify the performance of ILS, we

compare the results obtained by the AIMMS AOA and ILS for

solving small benchmark instances. The parameters varied are

number of nodes |N|, number of paths/vehicles |P| and time

budget for each path T. Since the test instances from TSPLIB

are in sets of 100 vertices (kroA100, kroB100 and kroC100)

and 200 vertices (kroA200 and kroB200), solving for

optimality using the entire set of benchmark instances will be

beyond computational reach. As such, to reduce the size of the

experiment, only the initial 15 vertices from each instance were

used, and experiments for 5, 10 and 15 vertices were conducted.

In addition, the number of paths |P| tested for each test

instance was 1, 2 and 3.

Table 1 summarizes some results obtained. Due to limited

space, we are not able to show the entire set of results. The

gaps between ILS and AIMMS solutions for all instances range

from 0% to 3.32%. As such, further experimentation to

evaluate the TOPVP heuristic for larger test instances is a

plausible notion.

With regards to the time budget designated for each path,

arbitrary values were picked for the verification and validation

experiments. To illustrate, the edge costs calculated from the

benchmark instances can range up to around 3000 time units.

For experiments with only 5 nodes or 5000 time units allocated

for each path, the optimality gap is likely to be 0%. This can

be attributed to the elimination of nodes that require more than

2500 time units when visiting from the start node. As such, the

reduction in the number of nodes considered resulted in the

TOPVP heuristic to more likely converge to the optimal

solution.

On the contrary, for larger experiments with more than

7000 time units allocated, every node can be visited. In this

case, the performance of ILS drops slightly, being able to

achieve optimality in some experiments only. This is because

for a given larger time budget, the paths in the solution will be

longer and the maximum allowable passes made at each path

will be higher. As observed, the computation times required for

some larger instances have already exceeded 300000 seconds.

Thus, setting larger time budget is likely to be beyond

computational reach.

We continue conducting experiments for the full range of

nodes using the benchmark instances, kroA100, kroB100,

kroC100, kroA200 and kroB200. Since AIMMS is unable to

solve the problem optimally after 2 hours of computational

time, we decide to relax the integer requirements of the

decision variables and treat them as the upper bound values of

the solutions.

Table 1: KroA100 experimental results

Instance |𝑷| |𝑽| 𝑻 AIMMS Obj Value ILS Obj Value Optimality Gap (%) AIMMS CPU Time (s)

kroA100 1 5 5000 81.00 81.00 0.000 0.26

 1 5 7500 173.07 169.13 2.277 150.84

 1 10 5000 251.99 250.50 0.591 3.84

 1 10 7500 294.19 293.07 0.381 13.66

 1 15 5000 249.90 249.35 0.220 54.91

 1 15 7500 334.64 330.11 1.354 592.26

 2 5 9000 279.82 279.77 0.018 2.86

 2 10 9000 541.10 538.50 0.481 796.95

 2 15 9000 715.09 691.35 3.320 19634.19

 3 5 9000 280.00 280.00 0.000 2.70

 3 10 9000 553.80 553.17 0.114 2604.34

 3 15 9000 788.15 779.49 1.099 346925.58

Table 2: KroA100 and KroA200 experimental results

Instance |𝑷| |𝑽| 𝑻
AIMMS Relaxed

Solution
ILS Obj Value TOPVP CPU Time (s)

Upper Bound-TOPVP
Gap (%)

kroA100 2 25 7020 889.06 736.49 0.66 23.24

 2 50 7186 1842.05 1205.71 1.50 38.73

 2 75 7240 2453.64 1372.54 1.75 49.82

 2 100 7351 2873.86 1539.49 4.51 50.98

 3 25 4680 914.01 667.23 0.86 29.99

 3 50 4791 1486.12 967.35 1.12 42.14

 3 75 4827 2060.14 1174.92 2.07 47.30

 3 100 4901 2671.92 1318.98 2.17 58.43

 4 25 3510 566.24 580.05 0.74 0.03

 4 50 3593 1148.19 757.50 0.64 41.47

 4 75 3620 1648.31 956.83 1.77 50.40

 4 100 3673 2063.15 1083.80 2.64 53.83

kroA200 2 125 7345 3332.03 1755.72 3.90 53.92

 2 150 7380 3634.92 1914.66 7.17 57.49

 2 175 7380 4133.91 2036.53 5.21 61.01

 2 200 7380 4144.51 2111.68 8.94 60.62

 3 125 4897 2864.98 1687.18 3.34 50.22

 3 150 4920 3160.60 1722.68 4.77 55.39

 3 175 4920 3927.29 1860.15 4.89 61.20

 3 200 4920 3376.31 1917.95 4.97 59.64

 4 125 3673 2422.35 1405.30 2.17 50.46

 4 150 3690 2564.64 1498.14 2.94 50.01

 4 175 3690 2778.86 1595.99 3.18 51.90

 4 200 3690 3498.26 1630.20 3.70 53.40

Some results for the kroA100 instance are presented in

Table 1. The number of nodes were varied at 25, 50, 75 and

100. The results for a larger instance, kroA200, are also

presented in Table 2. Experiments were conducted for 2-path,

3-path and 4-path TOPVPs.

As observed from Table 2, ILS is able to obtain a

solution using considerably small computation time, even for

the large instances kroA200 and kroB200. The maximum

computation time recorded was 11.95 seconds for 2-path 175

nodes TOPVP using test instance kroB200.

Although the gap between the solution obtained from

ILS and the upper bound is large, it can be reasonably

justified. Given the termination time being set at 7200

seconds, AIMMS is unable to achieve the terminating

condition for the AOA algorithm. Thus, the upper bounds as

well as the solutions obtained from AIMMS are still relaxed

and may not be feasible. Hence, the actual optimality gap is

expected to be smaller than the gap reported in Table 2.

ILS managed to produce near-optimal solution for a few

of the experiments. More specifically, for kroA100 4-path as

well as kroB100 3-path and 4-path, the gaps for the

experiments using only 25 nodes are considerably small,

ranging from 0.03% to 5.59%. The reason for this is twofold;

1) the number of nodes is only 25 and 2) the time budgets

allocated for the 3-path and 4-path experiments are relatively

low. As such, the number of feasible nodes in the time budget

constraint is small, enabling ILS to reach a near-optimal

solution quickly.

On the contrary, for experiments with more nodes, ILS

is unable to achieve similar small gaps. By the same

argument, the number of feasible nodes for ILS to consider

is large which explains the much larger gap reported.

6. CONCLUSION

We introduce a variant of the Orienteering Problem,

namely the Team Orienteering Problem with Variable Profit

(TOPVP). In TOPVP, multiple paths are involved in

collecting scores which are dependent on the time spent at

the nodes. In this paper, the TOPVP is formulated as a Mixed

Integer Non-Linear Programming mathematical model. We

also developed an Iterated Local Search algorithm for

solving the TOPVP.

We then compare the results obtained from solving

some modified benchmark instances by ILS with that

obtained by the AIMMS Outer Approximation algorithm.

The AOA is only able to solve small instances. For the small

benchmark instances ranging up to 15 nodes, ILS is able to

achieve optimality in several experiments using considerably

short computation time. ILS is then applied to larger

instances ranging up to 200 nodes. While the computation

time for ILS is low, the gap between the ILS and the upper

bound obtained from AIMMS after 2 hours is still

considerably large. This could be due to the simplicity of the

operators used in ILS. As such, the development of a more

effective heuristic incorporating more advanced operators to

achieve a smaller optimality gap is a possible direction of

future research. Finally, we plan to implement the algorithm

to solve some applications of the OP, such as the vehicle

routing problem and the tourist trip design problem.

REFERENCES

Archetti, C., Hertz, A., and Speranza, M.G. (2007)

Metaheuristics for the team orienteering problem.

Journal of Heuristics, 13, 49-76.

Boussier, S., Feillet, D., and Gendreau, M.L. (2007) An exact

algorithm for team orienteering problems. 4OR, 5, 211-

230.

Chao, I., Golden, B., and Wasil, E. (1996a) A fast and

effective heuristic for the orienteering problem.

European Journal of Operational Research, 88, 475-489.

Chao, I., Golden, B., and Wasil, E. (1996b). The team

orienteering problem. European Journal of Operational

Research, 88, 464-474.

Dueck, G. (1993) New optimization heuristics; the great

deluge algorithm and the record-to-record travel. Journal

of Computational Physics, 104, 86-92.

Erdoğan, G., and Laporte, G. (2013) The orienteering

problem with variable profits. Networks, 61, 104-116.

Gunawan, A., Lau, H.C., and Vansteenwegen, P. (2016)

Orienteering problem: a survey of recent variants,

solution approaches and applications. European Journal

of Operational Research, 255, 315-332.

Gendreau, M., Laporte, G., and Semet, F. (1997). The

covering tour problem. Operations Research, 45, 568-

576.

Harvey, W.D., and Ginsberg, M.L. (1995) Limited

discrepancy search. Proceedings of the 14th

International Joint Conference on Artificial Intelligence,

607-615.

Heidelberg University. (n.d.). TSPLIB. Retrieved from

Discrete and Combinatorial Optimization:

http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/index.html

Hunting, M. (2011) The AIMMS Outer Aproximation

Algorithm for MINLP. Advanced Interactive

Multidimensional Modeling System.

Laporte, G., and Martello, S. (1990) The selective travelling

salesman problem. Discrete Applied Mathematics, 26,

193-207.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html

