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Abstract. A semiconductor foundry company usually involves several factories (fabs). Due to dynamic 

change of market demand, the product mix assigned to a fab may not be compatible to its originally designed 

tool mix. Therefore, these different fabs have to frequently support capacity to each other in a dynamic way in 

order to increase the capacity utilization of the company. However, these fabs are essentially competitors from 

the perspective of performance measurement; and may not fully support the other fabs. This research attempts 

to develop a capacity trading and pricing mechanism to enable these fabs to effectively cooperate with each 

other to increase overall capacity utilization. This research involves two decisions. The first decision is to find 

an optimum capacity trading portfolio among the fabs. We use discrete event simulation, artificial neural 

network, and genetic algorithm to make such a decision. The second decision is to set a “fair transfer price” 

for each unit of trading capacity. Herein, the fair transfer price denotes that these fabs that participate in the 

capacity trading shall “fairly” share the overall benefit so generated. This benefit sharing shall enable these 

fabs to have stronger intention to effectively support each other in capacity. 
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1. INTRODUCTION 
 

Semiconductor foundry is a business model in which a 
semiconductor foundry company is dedicated to provide 
manufacturing services. Namely, it only manufactures IC 
(integrated circuit) products for its customers (IC design 
houses) and does not involve in designing ICs. The 
investment of a leading-edge semiconductor factory (fab) is 
tremendously high, around 4-5 billion dollars. Therefore, 
IC design houses tend not to build their own semiconductor 
fabs and always adopt outsourcing policy in manufacturing. 

Due to economy of scale, a semiconductor foundry 
company is usually large in scale and involves many fabs 
that are located near to each other. Due to dynamic change 
of market demand, the product mix assigned to a fab may 
not be quite compatible to its originally designed tool mix. 
Namely, a workstation in one fab may be lack of capacity 
while the same type of workstation may be underutilized in 
another fab. Therefore, these different fabs must frequently 
support capacity to each other in a dynamic way in order to 

increase the capacity utilization of the company. In practice, 
a foundry company would call a weekly meeting for 
discussing the capacity supporting plan among fabs for the 
coming week.  

However, the weekly capacity supporting plan is 
usually concluded through a “negotiation” process and 
always not so effective. The reason is that these fabs even 
in the same company are essentially “competitors” from the 
perspective of inner performance measurement. A fab that 
gives capacity support to another fab may result in poor 
performance, while the fab that receives capacity support 
may leads to better performance. This internal competition 
inhibits the motivation of a fab to fully support capacity to 
other fabs. Therefore, developing a “fair” trading 
mechanism to motivate each fab to actively support 
capacity to each other in order to maximize the company’s 
total profit is very important. 

A number of prior studies on semiconductor capacity 
trading have been published. Some studies assume a free-
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will trading scenario; that is, each fab can trade capacity at 
its own will. Chiang et al. (2011) propose an auction 
system for semiconductor capacity trading within a 
company. Some apply game theory to obtain an 
equilibrium capacity trading portfolio for multiple factories 
(Chien, 2013; Renna and Argoneto, 2011). The free-will 
approach drives toward maximizing each fab’s benefit 
rather than the whole company’s benefit. Wu & Chang 
(2007, 2008) assume an authority-will trading scenario; that 
is, the corporate headquarter determine an optimum trading 
portfolio for two fabs and each fab must strictly follow. 
The authority-will approach drives toward maximizing the 
whole company’s profit but may distort the performance of 
each fab. 

Extending from Wu & Chang (2007 , 2008), this 
research attempts to develop an optimum capacity trading 
portfolio and a fair pricing mechanism for multiple fabs in 
order to enable these fabs to effectively cooperate with 
each other to increase overall capacity utilization. This 
research involves two decisions. The first decision is to find 
an optimum capacity trading portfolio among the fabs. We 
use discrete event simulation, artificial neural network, and 
genetic algorithm to make such a decision. The second 
decision is to determine a “fair transfer price” for each unit 
of trading capacity of a workstation. The fair transfer price 
denotes that these fabs that participate in the capacity 
trading shall “fairly” share the overall benefit generated. 
This benefit sharing shall enable these fabs to have stronger 
intention to support each other in capacity. 

This paper is organized as follows. Section 2 addresses 
how to determine the optimum trading portfolio among 
fabs. Section 3 presents the fair pricing mechanism. 
Numerical experiments are in Section 4 and Concluding 
remarks are in Section 5. 

 

2. OPTIMUM CAPACITY TRADING PORTFOLIO 

 

2.1 Problem Description 
 

The capacity trading scenario is introduced below. The 
semiconductor foundry company has n fabs, which are 
located near to each other so that they can mutually support 
capacity. Each fab has m workstations. We denote Wij as 
workstation i in fab j, and Wi* (workstation i in any fab) are 
functionally identical and can mutually trade capacity.  

Before proceeding weekly capacity trading, each fab j 
has the following information: (1) job input schedule of the 
coming week and (2) work-in-process status of each 
workstation. By discrete event simulation software, we can 
obtain the weekly throughput and (2) the utilization of 
workstation of each fab j at the end of the coming week. 
The objective is to trade capacity of workstation Wi* among 
fabs in order to maximize the total throughput of all fabs. 
Notation for formulating the problem is listed in Table 1. 

Table 1: Notation for determining capacity trading portfolio 

Symbol Explanation 

𝐼𝑆𝑗
0  job input schedule of fab j at beginning 

𝑊𝐼𝑃𝑖𝑗
0   work-in-process of workstation i in fab j at beginning 

𝑇ℎ𝑗
0  weekly throughput of fab j before capacity trading 

𝜌𝑖𝑗
0   utilization of workstation Wij before capacity trading 

𝑄𝑖𝑗   number of machines in workstation Wij 

�̅�𝑖
0  average utilization of workstation Wi* before capacity trading 

𝑇ℎ𝑗   weekly throughput of fab j after capacity trading 

𝜌𝑖𝑗   utilization of workstation Wij after capacity trading 

u basic unit of capacity trading (say, 6 hours) 

T total working hours of a week (say, 24 hours/day *7 days) 

𝑥𝑖𝑗   trading capacity of workstation Wij 

𝑋𝑗 =[𝑥1,𝑗 , … , 𝑥𝑚𝑗]  a capacity trading portfolio for fab j 

𝐗 = [𝑋1, 𝑋2, … , 𝑋𝑛]  a capacity trading portfolio for all fabs; 𝐗 = �̅� denotes no capacity trading among fabs 

𝑅𝑖𝑗   maximum capacity unit that can be traded in workstation Wij 

 

 

 



 

Based on the notation, we use the following formulation to present the problem. 

Max ∑ 𝑇ℎ𝑗
𝑛
𝑗=1   (1) 

(𝑇ℎ𝑗
0, 𝜌𝑖𝑗

0 ) = 𝐸𝑣𝑎𝑢𝑙𝑎𝑡𝑒(no trading or 𝑿 = 𝟎 ̅̅̅̅ | 𝐼𝑆𝑗
0, 𝑊𝐼𝑃𝑖𝑗

0 ) 1 ≤ 𝑗 ≤ 𝑛  (2) 

(𝑇ℎ𝑗 , 𝜌𝑖𝑗 ) = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (trading portfolio 𝑿 |𝐼𝑆𝑗
0, 𝑊𝐼𝑃𝑖𝑗

0 ) 1 ≤ 𝑗 ≤ 𝑛  (3) 

𝑅𝑖𝑗 = 𝑅𝑜𝑢𝑛𝑑_𝑑𝑜𝑤𝑛 (
1

𝑢
 |�̅�𝑖 − 𝜌𝑖𝑗

0 | ∙ 𝑄𝑖𝑗 ∙ 𝑇)  1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛  (4) 

If (�̅�𝑖 − 𝜌𝑖𝑗) ≥ 0, then 𝑥𝑖𝑗 ≥ 0 and 𝑥𝑖𝑗 ∈ {0, 1, … , 𝑅𝑖𝑗}  (5) 

If (�̅�𝑖 − 𝜌𝑖𝑗) ≤ 0, then 𝑥𝑖𝑗 ≤ 0 and 𝑥𝑖𝑗 ∈ {0, −1, … , −𝑅𝑖𝑗}  (6) 

∑ 𝑥𝑖𝑗
𝑛
𝑗=1 = 0  (7) 

 

In the above formulation, Eq (1) denotes that the 
objective is to maximize the total throughput of all fabs 
after trading capacity. Eq (2) denotes that the throughput 
and workstation utilization before trading can be evaluated 
by simulation, where WIPij

0 (WIP status) is obtained from 
MES (manufacturing execution system) and ISj

0 (job input 
schedule of the coming week) is obtained from the 
production plan.  Likewise, Eq. (3) denotes that the 
throughput and workstation utilization after trading can be 
evaluated by simulation. Eq (4) defines the upper bound of 
each workstation for trading capacity; and ensure that the 
trade quantity is a positive integer. Eqs (5) and (6) defines 
the possible trading quantity for each workstation; 
moreover,  xij ≥ 0 denotes that workstation Wij can only 
purchase capacity while xij ≤ 0 denotes that workstation 
Wij can only sell capacity. Eq. (7) ensures that the sum of 
sold capacity is equal to the sum of buy-in capacity for 
each workstation Wi*.  

Implementation of Eq. (3) is explained in more detail as 
follows. In carrying out a capacity trading plan, some jobs 
of a fab have to move to another fab for using the buy-in 
capacity and move back. To simulate the job moving 
among all fabs, we need to take all fabs as a simulation 
system, which becomes quite complex and computationally 
extensive. To reduce computation time, we simplify the 
simulation by scaling up/down the processing time. If a 
workstation Wij increases in available capacity after trading, 
we scale down the processing times of operations that go 
through Wij; and vice versa. By such a simplification 
method, each fab can be independently simulated by an 
individual computer; as a result, all fabs can be processed 
in parallel and require much less computational effort.   

Even so, solving the above formulation is still 
computationally extensive for two reasons. First, the 
solution space of trading portfolio is huge. Suppose each 
workstation has k alternatives to trade; each fab then has 
𝑚𝑘  trading portfolio; in turn, there are 𝑚𝑘∙𝑛  trading 
portfolios for all fabs. Second, for each trading portfolio X, 
we have to carry out one simulation for each fab which 

sums up to n simulations for all fabs. This implies that we 
need to carry out 𝑚𝑘∙𝑛 ∙ 𝑛  simulations for exhaustively 
evaluating the set of all possible trading portfolios {X}.   

 

2.2 Neural Network and Genetic Algorithm  

 

To resolve the computational extensive issue, we apply 
the techniques of neural network (Dadhoff, 1990) and 
genetic algorithm (Gen and Cheng, 2000). The neural 
network technique is designed to emulate and replace the 
role of simulation in order to reduce the computation time 
for evaluating a capacity trading portfolio. The genetic 
algorithm (GA) is designed to effectively search the 
solution space rather than by applying an exhaustive search. 

The neural network technique is explained below. 
Consider each fab j with capacity trading portfolio Xj as a 
complex system. Given a set of sampled input vectors, we 
can obtain a set of corresponding output vectors by 
simulation. Then, the set of input/output vectors (obtained 
by simulation) can be used to establish a neural network by 
a training process. The trained neural network can be used 
as an efficient performance evaluator. Given a new input 
vector, the trained neural network can be used to quickly 
compute its corresponding output vector. That is, Eqs (2) 
and (3) in the evaluated formulation can be evaluated by 
the neural network other than by simulation. Carrying out 
the valuations in Eqs (2) and (3) by neural network is much 
faster than by simulation. Prior research (Wu and Cheng, 
2007) notices that one performance evaluation that takes a 
few minutes by simulation may requires only one 
thousandth second by its corresponding neural network, 
about 10,000 times faster. 

The genetic algorithm (GA) is a solution space search 
technique, which has been widely applied in various 
disciplines. The basic idea of GA involves three major 
steps. First, we model a solution by a sequence of digits, 
which is called a chromosome (X), herein a chromosome is 
a trading portfolio; and a population of chromosomes is 



 

randomly created. Second, we randomly pick a few 
chromosomes from the population; use crossover and 
mutation operators to generate new chromosomes; evaluate 
the performance of these new chromosomes; and the 
chromosome population is updated by including better 
quality chromosomes. Third, the chromosome population 
updating process is iteratively performed until a 
satisfactory solution is obtained. The solution ultimately 
obtained from GA is denoted by 𝑿∗, which is the best 
solution that can be found from GA or called a near 
optimum solution. 

3. PRICING DECISION FOR CAPACITY TRADING 

 

This section presents a model for determining the 
transfer price of trading capacity among semiconductor 
fabs. In the pricing model, we assume that the corporate 
headquarter has determined the optimum trading portfolio 
X* that can maximize the total profit of all fabs; and the 
throughput of each fab after capacity trading has been 
obtained by simulation. Notations of the pricing model are 
partially listed in Table 2 and the others have been shown 
in Table 1. 

 

Table 2: Notation for the pricing model 

Symbol Explanation 

ℎ  selling price per throughput wafer 

𝑥𝑖𝑗   amount of trade capacity of workstation Wij 

𝑐𝑖  weekly depreciation cost of workstation Wi* 

𝑝𝑖  unit transfer price of workstation Wi* 

𝛿𝑗   increased profit of fab j due to trading capacity 

𝑟𝑗  percentage of increased profit of fab j after trading 

 

The pricing model is formulated as follows. 

Minimize  (𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛)   (8) 

s.t.  

𝛿𝑗 = (𝑇ℎ𝑗 − 𝑇ℎ𝑗
0) ∙ ℎ + ∑ (𝑝𝑖 ∙ 𝑥𝑖𝑗)𝑚

𝑖=1 ,  j = 1, …, n,  (9) 

𝑟𝑗 =
𝛿𝑗

𝑇ℎ𝑗
0∙ℎ

 j = 1, …, n (10) 

𝑐𝑖 ≤ 𝑝𝑖 , i = 1, …, m (11) 

𝑟𝑚𝑖𝑛 ≤ 𝑟𝑗 ,  i = 1, …, m (12) 

𝑟𝑗 ≤ 𝑟𝑚𝑎𝑥 , i = 1, …, m (13) 

𝑟𝑗 ≥ 0, i = 1, …, m (14) 

 

In the above formulation, Eq (8) is the objective 
function which attempts to make each fab share the total 
benefit after trading as fair as possible. That is, the increase 
percentage of profit (𝑟𝑗) of each fab after trading must be as 
equal as possible. Eq (9) describes the increased profit of 
fab j after trading, which involves two parts. The first part 
is due to the increase of throughput which receives more 
revenue from outside customers. The second part is due to 
transfer pricing, the selling or buy-in capacity from other 
fabs. Eq (10) describes the increased percentage of each fab. 
Eq (11) ensures that the transfer price of a workstation shall 

be higher than its depreciation cost. Eqs (12) and (13) 
attempts model 𝑟𝑚𝑎𝑥  and  𝑟𝑚𝑖𝑛  to compute objective 
function. Eq. (14) ensures that each fab must get more 
profit after trading. 

 

4. NUMERICAL EXPERIMENTS 
 

Numerical experiments of the proposed method have 
been carried out. The experiment assumptions are stated 
below. A semiconductor foundry company has three fabs 



 

which trade capacity weekly. Table 3 shows the production 
information of each fab, which is a simplified case of a 
real-world fab provided by a semiconductor company. A 
basic unit of capacity trading is 20 machine hours. 

By the proposed method, the optimum capacity trading 
portfolio is shown in Table 4. The table indicates that 6 
workstations need to trade capacity. For workstation WS6, 
Fab 1 has to sell 10 units, Fab 2 has to buy 4 units, and Fab 
3 has to buy 6 units. Table 5 shows the profit of selling 
throughput wafers before and after trading capacity. See the 
table, after trading capacity, Fab 1 increases the throughput 
of 4P1M products, Fab 2 remains the same in throughput, 
and Fab3 increases the throughputs of both 1P5M and 
1P6M products. Trading capacity among the three fabs 
indeed increases the overall throughput of the three fabs.  

Now we discuss the transfer price obtained by the 
proposed method. Table 6 shows the transfer price of each 
workstation, and compares the transfer price against the 
depreciation cost of capacity. Of the 6 workstations, the 
transfer prices of WS5 and WS2 are most expensive, 
respectively 3.8 and 3.4 times of their depreciation costs. In 
contrast, the transfer prices of the other workstations are 
about equal to their depreciation costs. Namely, 

workstation WS5 and WS2 are two most precious 
workstations in the coming week, which shall be 
effectively used and fairly charged when a demand for 
supporting capacity is issued.  

Table 7 compares the total profit of each fab; which 
includes the profit of selling throughput wafers and the 
profit of selling capacity to other fabs. The table shows that 
each fab increases profit by about 16.0% after trading 
capacity if we adopt the proposed transfer price system. 
This finding supports that the transfer prices of capacity 
obtained by the proposed method is quite “fair” a fair; each 
fab fairly shares the overall benefit generated by trading 
capacity. In contrast, if there is no charge when we 
implement the trading capacity plan (i.e., transfer price is 
zero), then Fab 3 receives most favor; its profit increases 
42.2%; yet Fab1 and Fab receives only 7.7% and 0.7%. 
Apparently, such a substantial difference in profit may 
discourage the fab that supports capacity to other fabs. As a 
result, capacity support by negotiation can never be 
effectively implemented if a “fair” transfer pricing 
mechanism is not established. 

 

 

Table 3: Production Information of Each Fab 

FAB Number of 

Workstation 

Number of 

Tools 

Product 

Types 

Total processing times 

(hours) 

Total number of 

operations 
Fab 1 60 270 

4P1M 402 358 
1P7M 443 412 

Fab 2 60 207 
1P3M 315 276 

1P8M 477 446 

Fab 3 60 210 
1P5M 381 344 

1P6M 411 378 

 

Table 4: Optimum capacity trading portfolio (1 unit = 20 machine hours) 

FAB WS 1 WS 2 WS 3 WS 4 WS 5 WS 6 

Fab 1 − 2 1 2 0 4 − 10 

Fab 2 2 − 1 − 11 1 9 4 

Fab 3 0 0 9 − 1 − 13 6 

 

Table 5: Wafer throughput profit before and after capacity trading 

Fab Fab 1 Fab 2 Fab 3 

Product Types 4P1M 1P7M 1P3M 1P8M 1P5M 1P6M 

Profit per wafer $ 65 $ 80 $ 50 $ 100 $ 90 $ 85 

Throughput (Before Trading) 2,025 1,250 1,925 875 750 1,350 

Throughput (After Trading) 2,300 1,250 1,950 875 1,250 1,725 

Total Profit (Before Trading) $ 231,625 $ 183,750 $ 182,250 

Total Profit (After Trading) $ 249,500 $ 185,000 $ 259,125 



 

Table 6: Ratio of transfer price to depreciation cost 

 WS 1 WS 2 WS 3 WS 4 WS 5 WS 6 

Transfer Price (pj) $ 600 $ 2702 $ 1,200 $ 300 $ 4,608 $ 300 

Depreciation Cost (cj) $ 600 $ 800 $ 1,200 $ 300 $ 1,200 $ 300 

 p̃j= pj/cj 1 ≅ 3.4 1 1 ≅ 3.8 1 

 

Table 7: Total profits before and after trading  

 Fab 1 Fab 2 Fab 3 All Fabs 

Before Trading  $ 231,625 $ 183,750 $ 182,250 $ 597,625 

After Trading: No Transfer Price  $ 249,500 $ 185,000 $ 259,125 $ 249,500 

Increased %: No Transfer Price 7.7% 0.7% 42.2% 16.0% 

After Trading: With Transfer Price $ 268,834 $ 213,270 $ 211,521 $ 693,625 

Increased %: With Transfer Price 16.0% 16.0% 16.0% 16.0% 

 

5. CONCLUSION 
 

This research addresses an internal capacity trading 
problem for a semiconductor company that involves many 
fabs which need to trade capacity every week in order to 
effectively utilize the machines. The weekly capacity 
trading problem involves two decisions. First, the corporate 
headquarter has to determine an optimum trading portfolio 
that each fab must strictly follow for the coming week. 
Second, it also needs to determine appropriate transfer 
prices of the coming week to fairly reward the capacity 
support activity. 

To solve the problem of finding an optimum trading 
portfolio, we proposed a method that uses simulation, 
neural network, and genetic algorithm techniques. To solve 
the problem of determining a fair transfer price system, we 
proposed a linear program. The capacity transfer price of a 
workstation shall be changed every week, depending upon 
the its demand. The higher is the demand, the higher the 
transfer price.   

The contribution of this research is two-fold. First, we 
extend the work of prior studies from a two fab trading 
problem to a multiple fab trading problem, in the context of 
finding an optimum trading portfolio. Second, this research 
is a pioneer study in determining a fair transfer price 
system among semiconductor fabs. With a fair transfer 
price system, it shall greatly help motivate fab managers to 
actively support capacity to each other in order to increase 
the overall benefit of the company. 
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