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Abstract. The development in information technology has resulted in more diverse data characteristics and a larger data 

scale. Therefore, pattern recognition techniques have received significant interest in various fields  including industrial 

management. In this study, we focus on a pattern recognition technique based on distance metric learning, which is 

known as the learning method in metric matrix under an arbitrary constraint from the training data. This method can 

acquire the distance structure, which takes account of the statistical characteristics of the training data. Most distance 

metric learning methods estimate the metric matrix from pairs of training data. However, the computational complexity 

of deriving the optimal metric matrix becomes high especially when the input data dimension becomes high. In this study, 

we focus on each category centroid to reduce the computational complexity of calculating the optimal metric matrix. To 

obtain an effective and robust result, we introduce the Alternating Direction Method for Multiplier (ADMM) and the 

regularization approach. To verify the effectiveness of our proposed method from the viewpoint of classification 

accuracy, simulation experiments using benchmark data sets are conducted. 
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1. INTRODUCTION 

 

The development in information technology 

highlighted the importance of knowledge discovery from 

enormous electronic data. Many techniques to obtain valid 

information have been proposed and widely used in 

business fields (Bishop, 2006). In this study, we focus on 

the vector space model, which is widely used in various 

fields. The basic methods of the vector space model are k-

nearest neighbor, k-means, and template matching (Duda, 

2000). However, the performance of these methods 

depends on the distance metric that is adopted. Generally, 

the Euclidean distance or cosine measure is often used 

because their computational cost is relatively small. These 

measures cannot consider the correlation between each 

element of input data; therefore, these distance measures 

sometimes do not improve the performance. On the other 

hand, the Mahalanobis distance can consider the correlation 

between each element of input data. However, in case of its 

adoption, it needs to estimate the suitable Mahalanobis 

matrix (metric matrix) that can express the correlation 

between each element of the training data.  

The distance metric learning, which is the estimation 

of suitable distance metric under arbitrary constraints, is 
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one of the proposed methods in the field of machine 

learning (Yang et al., 2006). Generally, the distance metric 

learning adopts the Mahalanobis distance and can calculate 

the suitable metric matrix from input data information.  

To obtain optimal metric matrix, most of the distance 

metric learning methods use iterative procedure. However, 

the computational complexity of these methods is relatively 

high especially when the dimension of input data becomes 

high. To reduce the computational complexity, the method 

of deriving optimal metric matrix using each category 

centroid with regularization is proposed (Mikawa et al., 

2015). The computational complexity of this method is 

relatively small compared to other conventional methods 

because it does not use the iterative procedure. However, 

this method merely focuses on the relation between each 

category centroid and its training data, and it does not 

consider the distance structure among each category 

centroid.  

From the above discussions, we propose the method to 

derive optimal metric matrix with consideration of the 

distance structure among each category centroid based on 

the method of Mikawa et al. The optimal metric matrix, 

which is derived from our proposed method, needs iterative 

procedure to obtain the optimal metric matrix. However, 

we show the effective way to derive the metric matrix using 

the alternating direction method of multiplier (Boyd et al., 

20xx). To verify the effectiveness of our proposed method, 

simulation experiments are conducted.  

 

 

2. PRELIMINARIES 
 

2.1 Notation 
 

Let the set of category 𝐶 be 𝐶 = {𝐶1, 𝐶2⋯ ,𝐶𝑁}, and 

𝑊  be the dimensional input vector, 𝒙𝑖 ∈ 𝑅
𝑊 be 𝒙𝑖 =

(𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑊)
T (𝑖 = 1, 2,⋯ , 𝐷) , where T  is the 

transpose of a vector that belongs to category 𝐶𝑛 ∈ 𝐶. The 

task of pattern recognition is to predict the correct category 

of a new input data 𝒙, whose category is unknown, by 

using a classification rule that is acquired from the training 

data.  

On the other hand, the distance measure of the vector 

space model, the Euclidean distance, and cosine measure 

are often used mainly from the viewpoint of computational 

cost. However, as mentioned previously, these measures 

cannot consider the statistical relationship between each 

element of input data. In contrast, the Mahalanobis distance 

is well-known and widely used as a distance metric that can 

consider the statistical relationship between each element 

of input data. The Mahalanobis distance can be defined 

using the metric matrix 𝑀 = [𝑀𝑖𝑗] ∈ 𝑅
𝑊×𝑊  whose 

elements can be estimated from the correlation between 

each element of input data. The Mahalanobis distance 

𝑑𝑀(𝒙𝑖 , 𝒙𝑗) between input data 𝒙𝑖 and 𝒙𝑗 is denoted by  

 𝑑𝑀(𝒙𝑖, 𝒙𝑗) = √(𝒙𝑖 − 𝒙𝑗)
𝑇
𝑀(𝒙𝑖 − 𝒙𝑗). (1) 

In addition, we use the centroid of each category to 

obtain the optimal metric matrix in this study. Here, let the 

centroid of category 𝐶𝑛 be 𝝁𝑛, which is formulated by  

 𝝁𝑛 =
1

|𝐶𝑛|
∑ (𝑥𝑖1, 𝑥𝑖2 ,⋯ , 𝑥𝑖𝑊)

T

𝒙𝑖∈𝐶𝑛

 . (2) 

   

Here, |𝐶𝑛|  denotes the number of training data that 

belongs to category 𝐶𝑛.  

 

2.2 Distance metric learning 

 

Distance metric learning is the method of estimating 

an appropriate distance metric from the training data based 

on its information (Yang et al., 2006). Generally, the metric 

matrix 𝑀  in equation (1) is calculated by solving the 

optimization problem under arbitrary constraint. To obtain 

the metric matrix, many methods have been proposed. In 

general, metric matrix is often used for pattern recognition 

tasks (e.g., face recognition, clustering, classification, 

image retrieval among others).  

One of the most well-known constraint widely used in 

the context of distance metric learning is the method of 

Xing et al. (2003). This method is called Mahalanobis 

Metric for Clustering (MMC), and defines the set of 

constraint (𝑆 or 𝐷) if the training data 𝒙𝑖  and 𝒙𝑗  are 

similar ( or dissimilar) in the following equations:  

 
𝑆: (𝒙𝑖 , 𝒙𝑗) ∈ 𝑆    if  𝒙𝑖𝑎𝑛𝑑 𝒙𝑗𝑎𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟,    

𝐷: (𝒙𝑖 , 𝒙𝑗) ∈ 𝐷if  𝒙𝑖𝑎𝑛𝑑 𝒙𝑗𝑎𝑟𝑒 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟. 

Xing et al. (2003) assumed that the information of 

similar or dissimilar has already been given beforehand and 

formulated the optimization problem that can estimate the 

optimal metric matrix 𝑀̂ as follows: 

 𝑀̂ = argmax𝑀 ∑ 𝑑𝑀(𝒙𝑖 , 𝒙𝑗)

(𝒙𝑖,𝒙𝑗)∈𝐷

, 
(3) 

 

subject to 

∑ 𝑑𝑀
2 (𝒙𝑖 , 𝒙𝑗) ≤ 1,

(𝒙𝑖,𝒙𝑗)∈𝑆

 

𝑀 ⪰ 0. 

(4) 

Here, M ⪰  0  denotes that the matrix 𝑀  is positive 

semidefinite.  

As mentioned previously, the MMC can derive the 

optimal metric matrix when the similarity or dissimilarity 

of the training data has already been given. On the other 



 

hand, in this study, we focus on supervised learning, where 

the category information of input data has already been 

given. In summary, we can obtain more information of the 

input data in this setting. To utilize the category 

information and to obtain optimal metric matrix, we use the 

centroid of each category.  

 

2.3 Alternating Direction Method of Multiplier 

 

The ADMM (Boyed et al., 2011) is an algorithm that 

can derive the optimal solution to optimize each variable. 

Here, let each variable be 𝒚 ∈ 𝑅𝑙 , 𝒛 ∈ 𝑅𝑚 , 𝐴 ∈ 𝑅𝑝×𝑙 , 
𝐵 ∈ 𝑅𝑝×𝑚, and 𝑐 ∈ 𝑅𝑝, then the optimization problem is 

formulated as follows: 

 minimize 𝑓(𝒚) + 𝑔(𝒛), (5) 

 subject to 𝐴𝒚 + 𝐵𝒛 = 𝒄. (6) 

Here, it is assumed that 𝑓(𝒚)  and 𝑔(𝒛)  are (not 

strictly) convex. To solve the above optimization problem, 

the augmented Lagrangian 𝐿𝜌 is defined by 

 𝐿𝜌(𝒚, 𝒛, 𝒖) = 𝑓(𝒚) + 𝑔(𝒛) +
𝜌

2
‖𝒓 + 𝒖‖2

2 (7) 

In equation (7), the expression of the augmented 

Lagrangian can be simplified by scaled form (Boyed et al., 

20xx). Here, 𝒓  is = 𝐴𝒚 + 𝐵𝒛 − 𝒄 , and 𝜌  is a tuning 

parameter satisfying 𝜌 >  0.  

The ADMM can derive optimal solutions by iterating 

the following equations to update each variable. 

 𝒚𝑘+1 ≔ argmin𝒚 𝐿𝜌(𝒚, 𝒛
𝑘 , 𝒖𝑘) (8) 

 𝒛𝑘+1 ≔ argmin𝒛 𝐿𝜌(𝒚
𝑘+1, 𝒛, 𝒖𝑘) (9) 

 𝒖𝑘+1 ≔ argmin𝒖 𝐿𝜌(𝒚
𝑘+1, 𝒛𝑘+1, 𝒖) (10) 

The optimal solution can be derived by iterating these 

equations under certain condition (Boyd et al., 2011). 

 

3. CONVENTIONAL METHOD 
 

As mentioned previously, many algorithms that use 

iterative procedures to obtain the optimal metric learning 

have been proposed. On the other hand, (Mikawa et al., 

2015) proposed the method of deriving the optimal metric 

matrix without any iterative procedure under the supervised 

framework with regularization. This method minimizes the 

sum of Mahalanobis distances between each category 

centroid 𝝁𝑛 and training data belonging to same category 

in the following: 

 
𝑀̂ = minimize𝑀  ∑ tr(𝑆𝑛𝑀)

𝑁

𝑛=1

+ 𝜂tr(𝑀), 

(11) 

 
subject to log det 𝑀 = 0, 

𝑀 ⪰ 0.  
(12) 

Here, tr(⋅) denotes the trace of matrix and 𝑆𝑛 ∈ 𝑅
𝑊×𝑊 is 

denoted by 

 𝑆𝑛 = ∑ (𝒙𝑖 − 𝝁𝑛)(𝒙𝑖 − 𝝁𝑛)
T.

𝒙𝑖∈𝐶𝑛

 (13) 

𝜂 is a regularization parameter that takes a positive value. 

The above optimization problem can be solved 

analytically using the method of Lagrange multiplier. The 

optimal solution 𝑀̂ can be derived as 

 𝑀̂ = det(𝑉)
1

𝑊 𝑉−1 , (14) 

where 𝑉 ∈ R𝑊×𝑊 satisfies the following equation:  

 𝑉 =  ∑𝑆𝑛

𝑁

𝑛=1

+ 𝜂𝐼 , (15) 

where 𝐼 is the 𝑊 ×𝑊 identical matrix.  

As mentioned previously, this method enables to 

derive the optimal solution analytically; therefore, it does 

not need to use an iterative procedure. This method is 

superior to other conventional methods in terms of 

computational complexity because the optimal metric 

matrix can be derived analytically.  

 
4. PROPOSED METHOD  

 

Most of the distance metric learning methods use 

similar or dissimilar information between training data. 

They also use iterative procedure to derive the optimal 

metric matrix. Therefore, if the number of training data 

increases, the computational cost also increases because the 

number of constraints becomes large. On the other hand, 

Mikawa et al. (2015) shows the derivation of optimal 

metric matrix by using the centroid of each category. 

However, from equations (11) and (12), this method does 

not use the relationship between categories.  

Therefore, this method does not make use of the category 

information to gain optimal metric matrix. Generally, if the 

data belongs to a different category, then the statistical 

characteristic of that is also different. Consequently, there is 

a possibility to improve the performance of classification to 

use the category information relationship.  

On the contrary, most of the distance metric learning 

methods solved the optimization problem under the 



 

constraint of similarity or dissimilarity of training data to 

derive the optimal metric matrix. As mentioned previously, 

increasing the number of training data results in the drastic 

increase in computational complexity because the number 

of constraints becomes large. Consequently, many methods 

of distance metric learning need high computational 

complexity. 

In this study, we assume that the centroid of each 

category can express the characteristics of its category, and 

show the way to derive the optimal metric matrix by using 

the distance between each category centroid as the 

constraint. From this assumption, our proposed method can 

reduce the number of constraints while considering the 

statistical difference of each category. In addition, we 

introduce the regularization similar to the method of GSML 

(Huang et al., 2011) to achieve the robust parameter 

estimation. 

Let 𝑙  be an arbitrary positive constant and 𝐿 ∈
𝑅𝑊×𝑊  be an arbitrary regularization matrix. The 

optimization problem in this study can be formulated by 

𝑀̂ = minimize𝑀∑𝑡𝑟(𝑆𝑛𝑀)

𝑁

𝑛=1

− log det𝑀 + 𝜂tr(𝐿𝑀), 

 

subject to 𝑑𝑀(𝝁𝑛 , 𝝁𝑛′) ≥ 𝑙,   ∀𝑛′: 𝑛 < 𝑛′, (16) 

                          𝑀 ⪰ 0.   

To solve the above optimization problem, we adopt 

the ADMM (Boyd et al., 20xx). Here, let the objective 

function of equation (16) be 𝑓(𝑀), and 𝑟𝑛𝑛′(𝑀), 𝐼(𝑣) is 

denoted by  

 𝑟𝑛𝑛′(𝑀) = 𝐼(𝑑𝑀(𝝁𝑛 , 𝝁𝑛′) − 𝑙), (17) 

 𝐼(𝑣) = {
0    (𝑣 ≥ 0),

∞    (𝑣 < 0).
 (18) 

To apply the ADMM, the above optimization problem is 

transformed as follows: 

minimize𝑀 = 𝑓(𝑍) + ∑ 𝑟𝑛𝑛′(𝑀𝑛𝑛′),

𝑛:𝑛<𝑛′

  (19) 

 subject to   𝑍 = 𝑀𝑛𝑛′ , (20) 

where 𝑍 ∈ 𝑅𝑊×𝑊 , 𝑀𝑛𝑛′ ∈ 𝑅
𝑊×𝑊, respectively. Moreover, 

the augmented Lagrangian of equation (19) can be defined 

by  

𝐿𝜌(𝑀𝑛𝑛′ , 𝑍, 𝑈𝑛𝑛′) = 𝑓(𝑍) + ∑ 𝑟𝑛𝑛′

𝑛:𝑛<𝑛′

(𝑀𝑛𝑛′) (21) 

 +
𝜌

2
∑ ‖𝑀𝑛𝑛′ − 𝑍 + 𝑈𝑛𝑛′‖𝐹

2 ,

𝑛:𝑛<𝑛′

 

where ‖𝐴‖𝐹 = √tr(𝐴
T𝐴) denotes the Frobenius norm.  

The ADMM form of the above optimization problem 

can be formulated as follows: 

 𝑀𝑛𝑛′
𝑘+1 ∶= argmin𝑀

𝑛𝑛′
𝐿𝜌(𝑀𝑛𝑛′ , 𝑍

𝑘 , 𝑈𝑛𝑛′
𝑘 ), (22) 

 𝑍𝑘+1 ∶= argmin𝑍𝐿𝜌(𝑀𝑛𝑛′
𝑘+1, 𝑍, 𝑈𝑛𝑛′

𝑘 ), (23) 

 𝑈𝑛𝑛′
𝑘+1 ≔ 𝑀𝑛𝑛′

𝑘+1 − 𝑍𝑘+1 + 𝑈𝑛𝑛′
𝑘 , (24) 

where 𝑘 is the number of iteration, and 𝑈𝑛𝑛′ is a matrix 

whose element is a multiplier. To obtain the optimal 

solution, the following equations need to be solved.  

𝑀𝑛𝑛′
𝑘+1  ≔ argmin𝑀

𝑛𝑛′
∑ 𝑟𝑛𝑛′

𝑛:𝑛<𝑛′

(𝑀𝑛𝑛′) 

  +
𝜌

2
∑ ‖𝑀𝑛𝑛′ − 𝑍

𝑘 + 𝑈𝑛𝑛′
𝑘 ‖

𝐹

2
,

𝑛:𝑛<𝑛′

 

(25) 

𝑍𝑘+1 ≔ argmin𝑍  𝑓(𝑍)

+
𝜌

2
∑ ‖𝑀𝑛𝑛′ − 𝑍 + 𝑈𝑛𝑛′‖𝐹

2 .

𝑛:𝑛<𝑛′

 
(26) 

To solve these equations, each variable can be updated by 

 𝑀𝑛𝑛′
𝑘+1  ≔ {

𝑍𝑘 − 𝑈𝑛𝑛′
𝑘 𝛼𝑛𝑛′ ≥ 𝑙,

Γ𝑛𝑛′ 𝛼𝑛𝑛′ < 𝑙,
  (27) 

  𝑍𝑘+1 ≔ 𝑄𝑘𝑍𝑘𝑄𝑘T , (28) 

 𝑈𝑛𝑛′
𝑘+1 ≔ 𝑀𝑛𝑛′

𝑘+1 − 𝑍𝑘+1 + 𝑈𝑛𝑛′
𝑘 . (29) 

Here, Γ𝑛𝑛′ , 𝛼𝑛𝑛′ , 𝜂𝑛𝑛′  are in the following: 

Γ𝑛𝑛′ =
𝜂𝑛𝑛′

𝜌
(𝝁𝑛 − 𝝁𝑛′)(𝝁𝑛 − 𝝁𝑛′)

𝑇 + 𝑍𝑘

− 𝑈𝑛𝑛′
𝑘 , 

(30) 

𝛼𝑛𝑛′ = (𝝁𝑛 − 𝝁𝑛′)(𝑍
𝑘

− 𝑈𝑛𝑛′
𝑘 )(𝝁𝑛 − 𝝁𝑛′)

T, 
(31) 

𝜂𝑛𝑛′ = −
𝜌

‖𝝁𝑛 − 𝝁𝑛′‖2
4 × 

{𝑙 − (𝝁𝑛 − 𝝁𝑛′)
T(𝑍𝑘 − 𝑈𝑛𝑛′

𝑘 )(𝝁𝑛 − 𝝁𝑛′)}, 

(32) 

In addition, 𝑍 is a 𝑍 = diag[𝑍11, 𝑍22,⋯ , 𝑍𝑊𝑊], and 𝑍𝑖𝑖 
satisfies  



 

 𝑍𝑖𝑖 =
𝜆𝑖 + √(𝜆𝑖)

2 + 4𝜌𝑁

2𝜌𝑁
, (33) 

where 𝜆𝑖  is the 𝑖 th eigenvalue of −∑ 𝑆𝑛
𝑁
𝑛=1 − 𝜂𝐿 +

𝜌𝑁(𝑀̅ + 𝑈) . Here, 𝑀̅, 𝑈̅  is an average of 𝑀𝑛𝑛′, 𝑈𝑛𝑛′ , 

respectively. Moreover, 𝑄  is the orthonormal matrix, 

which can be derived by the eigendecomposition of 

−∑ 𝑆𝑛
𝑁
𝑛=1 − 𝜂𝐿 + 𝜌𝑁(𝑀̅ + 𝑈).  

On the other hand, when 𝐿 equals to the identical 

matrix, the regularization term becomes tr(𝑀), and in case 

of 𝐿 = 𝑀 , the regularization term becomes ‖𝑀‖𝐹
2 . In 

addition, in case of 𝐿 = ∑ 𝑆𝑛
𝑁
𝑛=1 , the regularization term 

equals to the sum of squared Mahalanobis distance between 

the category centroid and its training data.  

 

5. SIMULATION EXPERIMENTS  
 

5.1 Experimental Conditions 

 

To verify the effectiveness of our proposed method, 

we conducted the classification experiment by using UCI 

machine learning repository (Asuncion, 2007). We used 

four data sets (iris, wine, balance, and ionosphere) and 

compared with the classification accuracy of other distance 

metric learning methods. We conducted the proposed 

method by using 𝐿 =  𝐼,𝑀, and ∑ 𝑆𝑛
𝑁
𝑛=1 , respectively. 

The parameters of 𝜂 and 𝜌 are decided in advance by the 

prior experiments. Classification accuracy is calculated as 

the average of ten observations. Basic information of each 

dataset is shown in Table 1. 

Table 1: Basic information of datasets. 

 Iris Wine Balance Ionosphere 

# of training data 135 161 563 316 

# of test data 15 17 62 35 

# of dimensions 3 13 4 34 

# of categories 3 3 3 2 

 

 

The classification accuracy is compared using the 

method of (Mikawa et al., 2015), Large Margin Nearest 

Neighbor (LMNN) (Weinberger, 2009), Information 

Theoretic Metric Learning (ITML) (Davis et al., 2007), and 

template matching by using Euclidean distance and cosine 

measure. To conduct LMNN and ITML, we use k-NN 

(Cover, 1969) 𝑘 =  3.  

 

5.2 Result of Experiments 

 

The result of the experiments is shown in Table 2. The 

result shows that the proposed method is superior to the 

conventional methods without using the balance dataset. In 

addition, when the role of the regularization parameter 

changed, the classification accuracy is not drastically 

changed. 

 

Table 2: Result of the experiments. 

 Proposed 

(𝐿 = 𝐼) 
Proposed 

(𝐿 = 𝑀) 

Proposed 

(𝐿 =
 ∑ tr(𝑆𝑛)

𝑁
𝑛=1 ) 

Mikawa et al. LMNN ITML Euclidean Cosine 

Iris 98.00 98.00 98.00 98.00 96.00 96.00 92.00 33.33 

Wine  99.44 98.89 98.33 98.85 96.05 72.47 72.60 32.90 

Balance  70.42 69.17 68.84 73.15 87.60 88.96 75.40 87.30 

Ionosphere 88.59 87.47 87.46 88.33 87.20 86.89 71.00 75.50 

 

 

6. DISCUSSIONS  
 

    In this study, we propose the method of deriving the 

optimal metric matrix by using each category centroid. 

Moreover, to change the arbitrary matrix 𝐿, the role of 

regularization changes. The result of the experiments shows 

that our proposed method is superior to the conventional 

methods in terms of classification accuracy. However, 

when using the balance dataset, the proposed method is not 

superior to the conventional methods. This is because our 

proposed method uses each category centroid when 

deriving the optimal metric matrix. However, because of 

the uneven distribution of balance dataset, the utilization of 

the centroid of each category is not suitable for improving 

the classification performance. In this case, it is suitable to 

use the conventional distance metric learning method with 

k-NN algorithms.  

 

7. CONCLUSION AND FUTURE WORK 

 

In this study, we proposed a method to estimate the 

optimal metric matrix using each category centroid. The 

result of the experiments showed that the proposed method 

is basically superior to the conventional method.  

The proposed method uses iterative procedure; 

therefore, the computational cost is inferior to the method 

of Mikawa et al., especially when the number of 

dimensions becomes large, which will be addressed in our 

future work.  
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APPENDICES 

 

APPENDIX A. Derivation of equation (27) 

 

The optimal solution can be obtained by solving the 

following equation. 

 

𝑀𝑛𝑛′
𝑘+1  ≔ argmin𝑀

𝑛𝑛′
∑ 𝑟𝑛𝑛′

𝑛:𝑛<𝑛′

(𝑀𝑛𝑛′) 

 +
𝜌

2
∑ ‖𝑀𝑛𝑛′ − 𝑍

𝑘 + 𝑈𝑛𝑛′
𝑘 ‖

𝐹

2

𝑛:𝑛<𝑛′

, 

 

 

Here, to simplify the equation, let 𝐴(𝑀𝑛𝑛′) be  

𝐴(𝑀𝑛𝑛′) =  
𝜌

2
∑ ‖𝑀𝑛𝑛′ − 𝑍

𝑘 + 𝑈𝑛𝑛′
𝑘 ‖

𝐹

2

𝑛:𝑛<𝑛′

.   (34) 

To obtain 𝑀𝑛𝑛′  update, we consider the following 

two cases.  

 

1. In case of 𝑑𝑀(𝝁𝑛 , 𝝁𝑛′) ≥ 𝑙. 
In this case, the first term of equation (25) becomes 0. 

Therefore, the optimal solution can be obtained to solve 

following function: 

 𝑀𝑛𝑛′
𝑘+1 ∶= argmin𝑀

𝑛𝑛′
𝐴(𝑀𝑛𝑛′). (35) 

The gradient of equation (35) can be derived as 

follows: 

𝛻𝑀
𝑛𝑛′
 𝐴(𝑀𝑛𝑛′) = 𝜌(𝑀𝑛𝑛′ − 𝑍

𝑘 + 𝑈𝑛𝑛′
𝑘 ) (36) 

If it sets to zero, we have  

 𝑀𝑛𝑛′ = 𝑍
𝑘 − 𝑈𝑛𝑛′

𝑘 . (37) 

To substitute equation (37) to equation (25), we have  

𝐼((𝝁𝑛 − 𝝁𝑛′)
𝑇(𝑍𝑘 − 𝑈𝑛𝑛′

𝑘 )(𝝁𝑛 − 𝝁𝑛′) − 𝑙). (38) 

From the above equations, if (𝝁𝑛 − 𝝁𝑛′)
𝑇(𝑍𝑘 −

𝑈𝑛𝑛′
𝑘 )(𝝁𝑛 − 𝝁𝑛′) > 𝑙 holds, 𝑀𝑛𝑛′

𝑘+1 = 𝑍𝑘 − 𝑈𝑛𝑛′
𝑘  holds.  

 

2. In case of 𝑑𝑀(𝝁𝑛 , 𝝁𝑛′) < 𝑙. 

The optimal solution of 𝑀𝑛𝑛′  can be derived by 

solving following optimization problem: 

 minimize𝑀
𝑛𝑛′
𝐴(𝑀𝑛𝑛′), (39) 

 subject to 𝑑𝑀(𝝁𝑛 , 𝝁𝑛′) < 𝑙. (40) 

Here, letting the Lagrangian of above optimization 

problem be 𝐵(𝑀𝑛𝑛′ , 𝜆), 𝐵(𝑀𝑛𝑛′ , 𝜆) becomes  

𝐵(𝑀𝑛𝑛′ , 𝜆) =
𝜌

2
‖𝑀𝑛𝑛′ − 𝑍

𝑘 + 𝑈𝑛𝑛′
𝑘 ‖

𝐹

2
+ 

          λ {𝑑𝑀
𝑛𝑛′
(𝝁𝑛 , 𝝁𝑛′) < 𝑙}.  

(41) 

The gradient of equation (41) becomes  

𝛻𝑀
𝑛𝑛′
𝐵(𝑀𝑛𝑛′ , 𝜆) = 𝜌(𝑀𝑛𝑛′ − 𝑍

𝑘 + 𝑈𝑛𝑛′
𝑘 ) 

+𝜆(𝝁𝑛 − 𝝁𝑛′)(𝝁𝑛 − 𝝁𝑛′)
T, 

(42) 

∂𝐵(𝑀𝑛𝑛′ , 𝜆)

𝜕𝜆
= 

(𝝁𝑛 − 𝝁𝑛′)
𝑇(𝑀𝑛𝑛′)(𝝁𝑛 − 𝝁𝑛′) = 𝑙. 

(43) 

Therefore, equation (43) becomes  

𝑀𝑛𝑛′ = −
𝜆

𝜌
(𝝁𝑛 , 𝝁𝑛′)(𝝁𝑛 , 𝝁𝑛′)

T + 𝑍𝑘 + 𝑈𝑛𝑛′
𝑘 . (44) 

To substitute equation (44) into equation (43), we 

have 

(𝝁𝑛 − 𝝁𝑛′)
T {−

𝜆

𝜌
(𝝁𝑛 − 𝝁𝑛′)(𝝁𝑛 − 𝝁𝑛′)

T

+ 𝑍𝑘 + 𝑈𝑛𝑛′
𝑘 } (𝝁𝑛 − 𝝁𝑛′) = 𝑙. 

(45) 

Therefore, we have 

(𝝁𝑛 − 𝝁𝑛′)
T {−

𝜆

𝜌
(𝝁𝑛 − 𝝁𝑛′)(𝝁𝑛 − 𝝁𝑛′)

T} × 

    (𝝁𝑛 − 𝝁𝑛′) + (𝝁𝑛 − 𝝁𝑛′)
T{𝑍𝑘 + 𝑈𝑛𝑛′

𝑘 } 

    (𝝁𝑛 − 𝝁𝑛′) = 𝑙.  

(46) 

Consequently,  

−
𝜆

𝜌
 ‖𝝁𝑛 − 𝝁𝑛′‖2

4 

= 𝑙 − (𝝁𝑛 − 𝝁𝑛′)
T{𝑍𝑘 + 𝑈𝑛𝑛′

𝑘 }(𝝁𝑛 − 𝝁𝑛′), 

(47) 

𝜆 =  −
𝜌

‖𝝁𝑛 − 𝝁𝑛′‖2
4 × 

{𝑙 −  (𝝁𝑛 − 𝝁𝑛′)
T(𝑍𝑘 + 𝑈𝑛𝑛′

𝑘 )(𝝁𝑛 − 𝝁𝑛′)}, 

 

is derived. From the above equations, 𝑀𝑛𝑛′ update can be 

carried out as follows: 



 

𝑀𝑛𝑛′ 

: =  

{
 
 

 
 𝑍𝑘 − 𝑈𝑛𝑛′

𝑘   (𝑑𝑀(𝝁𝑛 , 𝝁𝑛′) ≥ 𝑙),

−
𝜆

𝜌
(𝝁𝑛 , 𝝁𝑛′)(𝝁𝑛 , 𝝁𝑛′)

T + 𝑍𝑘 + 𝑈𝑛𝑛′
𝑘  

    (𝑑𝑀(𝝁𝑛 , 𝝁𝑛′) < 𝑙).

 
(48) 

 

APPENDIX B. Derivation of equation (28) 

 

The optimal solution can be obtained by solving the 

following equation. 

𝑍𝑘+1 ≔ argmin𝑍 𝑓(𝑍) 

+
𝜌

2
∑ ‖𝑀𝑛𝑛′ − 𝑍 + 𝑈𝑛𝑛′‖𝐹

2

𝑛:𝑛<𝑛′

. 
(49) 

The gradient of above equation becomes  

∑𝑆𝑛 − 𝑍
−1+𝜂𝐿

𝑁

𝑛=1

+ 𝜌 ∑ 𝑀𝑛𝑛′ − 𝑍 + 𝑈𝑛𝑛′

𝑛:𝑛<𝑛′

. (50) 

Here, let the average of 𝑀𝑛𝑛′ , 𝑈𝑛𝑛′  be  𝑀̅,  𝑈̅̅̅̅  

respectively (i.e., 𝑀̅ = 1/𝑁∑ 𝑀𝑛𝑛′𝑛:𝑛<𝑛′ ,  𝑈 =
1/𝑁∑ 𝑈𝑛𝑛′𝑛:𝑛<𝑛′ ). To transform equation (50), it becomes  

∑𝑆𝑛 − 𝑍
−1+𝜂𝐿

𝑁

𝑛=1

+
𝜌

𝑁
(𝑀̅ + 𝑈̅) + 𝜌𝑁 ⋅ 𝑍. (51) 

Therefore, we have  

−𝑍−1 + 𝜌𝑁𝑍 = −∑𝑆𝑛

𝑁

𝑛=1

− 𝜂𝐿 + 𝜌𝑁(𝑀̅ + 𝑈). (52) 

The right hand side of equation (52) is a symmetric 

matrix, then it can be decomposed as 𝑄Λ𝑄T, where 𝑄 is a 

orthonormal matrix, i.e. 𝑄𝑄T = 𝐼. In addition, Λ satisfies 

Λ = diag[𝜆1, 𝜆2 , ⋯ , 𝜆𝑊 ]  and 𝜆𝑤  denotes 𝑤  the 

eigenvalue of the right hand side of equation (52). 

Therefore, equation (52) can be transformed  

 −𝑍−1 + 𝜌𝑁𝑍 = 𝑄Λ𝑄T. (53) 

Moreover, let 𝑍  be 𝑍 =  𝑄𝑍𝑄T , then equation (53) 

becomes  

 −𝑍−1 + 𝜌𝑁𝑍 = Λ. (54) 

Here, 𝑍 = diag[𝑀̃11, 𝑀̃22, ⋯ , 𝑀̃𝑊𝑊 ] holds; 

therefore,  

 𝜌𝑁𝑍𝑖𝑖 −
1

𝑍̃𝑖𝑖
= 𝜆𝑖𝑖 , (55) 

is derived. Accordingly, we have 

 𝑍𝑖𝑖 = 𝜆𝑖 +
√𝜆𝑖

2 + 4𝜌𝑁

2𝜌𝑁
 . (56) 

To multiply 𝑄 to equation (56), the Z update can be 

carried out. 
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