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Abstract. Brain-computer interface (BCI) research has grown considerably in recent years. In particular, BCIs 

based on the principle of auditory steady-state response (ASSR) have been attracting attention. However, most 

ASSR-based BCIs are insufficiently versatile because they use only two class of classification. In this study, we 

investigate four-class classification accuracy in order to develop an improved ASSR-based BCI. In our experiment, 

four types of machine voice with different modulation frequencies (32, 36, 40, and 44 Hz) were adjusted so as to 

be heard from different directions (front, back, right, and left) and then played simultaneously through earphones. 

Five subjects were each instructed to concentrate on a particular voice determined randomly by on-screen 

instructions displayed during the interstimulus intervals. Features were extracted by analyzing the resulting 

electroencephalography. Learning and classification were then carried out using a support vector machine. Our 

experimental results show an overall average classification accuracy of ~40%, which is above the 25% (one in 

four) statistical baseline. This result suggests the possibility of a four-class ASSR-based BCI. However, the current 

classification accuracy is too low for actual use, and further improvement is deemed necessary. 
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1. INTRODUCTION 
 

Research on brain-computer interfaces (BCIs) has grown 

significantly in recent years (Wolpaw et al. 2002). A BCI is a 

control system that works without using body movements but 

rather by measuring changes in brain activity using near-

infrared spectroscopy (NIRS), electroencephalography (EEG), 

and functional magnetic resonance imaging (fMRI). BCIs are 

particularly suited as communication tools for people who are 

incapacitated by the likes of amyotrophic lateral sclerosis 

(ALS) or cerebral palsy. ALS (also known as Lou Gehrig’s 

disease) is a motor neuron disease that causes muscular 

atrophy and the eventual loss of voluntary movement control, 

although sensory perception is usually unaffected. As such, a 

BCI would be effective given that only brain activity, not 

bodily motion, is required to operate it (Wolpaw et al. 2002). 

In most BCI systems that have been studied, non-invasive EEG 

signals are used as the primary input. Such a system is 

categorized typical as being based on one of four possible 

command types: motor imagery (MI), P300 brain waves, 
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steady-state visually evoked potential (SSVEP), or auditory 

steady-state response (ASSR). 

At present, much of the technology for BCIs is based on 

MI, in which mental simulations of a physical action cause 

changes in brain activity. Often in MI-based BCI, the hands, 

feet, and tongue are used mentally to initiate commands. 

During MI, the amplitudes of the α and β bands of brain waves 

obtained via electrodes placed over the motor cortex are found 

to decrease; this is known as event-related desynchronization 

(ERD). The amplitudes return to their original levels once the 

subject ceases MI; this is known as event-related 

synchronization (ERS). ERD and ERS are the bases for an MI-

based BCI, which has the advantages of relatively high 

classification accuracy and the fact that external stimuli are 

unnecessary. However, this form of BCI is not suitable for 

those people for whom actual physical motion is impossible 

and hence its visualization (even with MI training) is extremely 

difficult (Curran et al. 2004). Hence, other forms of BCI have 

been developed that do not rely on MI, in particular P300, 

SSVEP, and ASSR.  

The P300 wave is a component of an event-related 

potential (ERP) that represents brain activity that is time 

locked to the eliciting event. P300 arises most frequently in 

association with the so-called oddball paradigm (Nijboer et al. 

2008). However, a consequence of this is that command input 

based on P300 can suffer from a considerable time delay. 

SSVEPs are brain responses to repetitive visual stimuli. 

SSVEP-based BCI involves the use of black-and-white 

checkerboard patterns and flashing light-emitting diodes 

(Hwang et al. 2012). Although this form of BCI has the 

advantages of relatively high information transfer rates and the 

fact that it does not require any initial training, there is a serious 

possibility of it triggering epileptic seizures in certain subjects 

(Regan et al. 1977). 

Given these somewhat intractable disadvantages of P300- 

and SSVEP-based BCIs, attention in recent years has turned 

instead to systems based on ASSR. This is a brain-wave 

response to repetitive auditory stimuli. ASSR-based BCI 

involves two forms of auditory stimulation—single tone and 

machine voice—based on different modulation frequencies. 

This form of BCI has the advantage that neither initial training 

nor a visual display is required. However, it lacks versatility at 

present because it involves only two class of classification 

(Kim et al. 2011). In the present study, we investigate four-

class classification accuracy in order to develop an improved 

ASSR-based BCI. 

 

2. Method 
 

2.1 Subjects 
 

Five healthy male volunteers were recruited from students 

of the Graduate School of Science and Engineering for 

Education at the University of Toyama. Before the experiment, 

each subject was given a detailed written summary of the 

experimental procedures, and agreed to participate voluntarily 

by signing a subject consent form. 

 

2.2 Auditory Stimuli 
 

ASSR is an electrical brain response that is evoked upon 

hearing periodic amplitude-modulated sinusoidal tones, sound 

clicks, or a machine voice (TANAKA et al. 2013; Nakamura 

et al. 2013). It generally shows increased amplitude around the 

modulation frequency of the sound stream. The optimal 

modulation frequency has been reported as being 30–50 Hz, 

with the maximum amplitude response at ~40 Hz (Reyes et al. 

2004). Therefore, we chose the four modulation frequencies of 

32, 36, 40, and 44 Hz. The associated modulated auditory 

stimuli involved a Japanese machine voice saying ‘mae’ (32 

Hz), ‘ushiro’ (44 Hz), ‘migi’ (40 Hz), and ‘hidari’ (36 Hz) so 

that the subjects could easily distinguish each sound. These 

stimuli were adjusted to be heard from different directions 

(front, back, right, and left) by combining them with a head-

related transfer function. They were generated using SofTalk 

(Japanese software) and MATLAB at a sampling rate of 8 kHz, 

and were saved in the waveform (.wav) audio file format. The 

duration of each auditory stimulus and trial was 10 s.  

 

2.3 Experimental task 

 

 

Figure. 1: Experimental task used in the study. 

 

An individual subject sat on a comfortable armchair in a 

dimly lit room in front of a monitor while wearing earphones. 

The experimental task is shown schematically in Figure. 1. 

Firstly, the subject was presented with a 3-s visual cue to alert 

them to which directional voice they should listen for; this 

instruction was chosen randomly. After this initial cue, the four 

auditory stimuli were played simultaneously for 10 s through 

the earphones while the subject maintained visual attention on 

a cross (+) in the center of the monitor. This ended with a 

stationary ‘X’ being displayed in the center of the monitor for 

5 s, during which time the subject could rest. The procedure 

was repeated for a total of 25 trials 

 

2.4 EEG recording 
 

Electrodes were attached to the subject’s scalp according 



 

 

 

 

to the International 10–20 system. EEG signals were acquired 

at four electrodes (Cz, Fz, T3, and T4) using a four-channel 

EEG acquisition system (ProComp infiniti, Thought 

Technology, USA). T3 and T4 are associated with the auditory 

cortical area. The choice of the other two electrodes was based 

on previous studies: Cz has been used in ASSR-based BCI 

research (Kim et al. 2011) and Fz has used in basic ASSR 

research (Griskova-Bulanova et al. 2013). The ground 

electrode was attached to the right earlobe, with the reference 

electrode on the left one. The EEG sampling rate was 256 Hz 

in each experiment. 

 

2.5 Feature extraction 

 

 

Figure. 2: the method of extracting features4 

 

In this study, we used four auditory stimuli, each 

modulated by a different frequency. We measured the EEG 

signals, including ASSR, of each pattern. From the resulting 

EEG data, we extracted four features to verify the classification 

accuracy. We used a total of 4×25=100 trials to classify the 

EEG data sets for selective attention to stimuli from the front 

(25), back (25), right (25), and left (25). The frequency 

spectrums of each window length were calculated using the 

fast Fourier transform (FFT). The four extracted features are 

listed below. 

 

Feature 1: amplitude of the corresponding frequency at each 

modulation frequency. 

Feature 2: amplitude ratio of the corresponding frequency in 

each modulation frequency. 

Feature 3: amplitude of the corresponding frequency and 

harmonic at each modulation frequency. 

Feature 4: amplitude of the frequency of the EEG data obtained 

by synchronous addition at each modulation frequency. 

 

Feature 4 involves additional averaged EEG data divided 

in the time domain using a 128-point analysis window and a 

50% overlap. These EEG data are then added synchronously, 

as shown in Figure. 2. 

The modulation frequencies used in this study are all 

integrally divisible by four so that a 64-point periodic analysis 

window arises in EEG data sampled at 256 Hz. This is not the 

case for, say, a 38-Hz sine wave, which therefore cannot be 

added synchronously. Consequently, we set the modulation 

frequencies as 32, 36, 40, and 44 Hz. 

We measured auditory-stimulus EEG data at 256 Hz for 

10 s for a single trial, thus creating data sets of 2,560 points 

each. Classification accuracy was determined using four 

different analysis windows. We compared the classification 

accuracy and analysis window length of the relationship using 

EEG measurements 1 s (256 points), 2 s (512 points), 4 s 

(1,024 points), and 8 s later (2,048 points). 

 In addition, we determined four types of classification 

accuracy by measuring the EEG signals from different 

electrode combinations: Cz only, Fz only, Cz and Fz, and all 

electrodes. We could not measure clear ASSR signals from T3 

and T4, and hence these were excluded from use in isolation. 

Using the above features, we determined classification 

accuracies using a 4-class nonlinear support vector machine 

(SVM) and leave-one-out cross validation. The SVM used the 

one-to-one approach and a Gaussian kernel. 

 

 

3. Result 

 

Table 1: Fz classification accuracy (%) 

 

Time (s) 1 2 4 8 

Feature1 35.3 40.4 35.3 42.6 

Feature2 40.5 37.5 37.2 45.6 

Feature3 41 37.5 39.5 44.2 

Feature4 41.1 39.2 42 45 

 

Table 2: Cz classification accuracy (%) 

 

Time (s) 1 2 4 8 

Feature1 39.5 39.6 42.2 43.8 

Feature2 38.8 39 41.4 43.9 

Feature3 39.2 37.5 37.4 41.8 

Feature4 38.7 40.7 37.6 39.1 

 

Table 3: Fz+Cz classification accuracy (%) 

 

Time (s) 1 2 4 8 

Feature1 42.1 39.1 38.9 44.3 

Feature2 45.1 38.7 39 43.2 

Feature3 44.2 36.9 38.5 42.1 

Feature4 38.6 40.1 41.2 41.8 

 



 

 

 

 

Table 4: All-channel classification accuracy (%) 

 

Time (s) 1 2 4 8 

Feature1 37.6 36.3 37.7 43.3 

Feature2 38.2 39.6 39.5 43.4 

Feature3 39.5 40.5 38.2 45.4 

Feature4 37.8 37.6 41.6 46 

 

The values of classification accuracy averaged over all 

subjects are listed in Tables 1–4. These show values that are 

consistently above that of the statistical-chance baseline (25%). 

The highest classification accuracy was obtained in all but 

three cases with a window length of 8 s. The average over all 

window lengths for each feature was joint highest for Features 

3 and 4 (41.8%) when using the Fz electrode. 

 
4. Discussion 

 

We determined the classification accuracy of ASSR using 

a 4-class SVM. Given that the results shown in Tables 1–4 are 

consistently >25%, we consider that they show the possibility 

of 4-class classification in an ASSR-based BCI.  

The highest classification accuracy was obtained in 

general when using an 8 s window length. However, this result 

is not particularly good in the context of an actual BCI because 

more time would be required to enter commands. Thus, it is 

considered necessary to make the tasks shorter in order to 

facilitate command input. 

The classification accuracies reported here are lower in 

general than those of previous research. In this study, because 

we played four types of sound simultaneously during the input 

task, it may well have been difficult for subjects to concentrate 

effectively. This may have had a detrimental impact on the 

classification accuracy. Therefore, we consider it necessary to 

improve the classification accuracy by devising a better sound-

presentation method for the input task. We intend to play each 

sound separately for a shorter time while requiring subjects to 

concentrate on individual sounds. In addition, we hope to 

improve the classification accuracy by moving each sound by 

several seconds. 

 
5. Conclusion 

 

Until now, the focus on ASSR-based BCIs has been on 

those with only two classes of classification. In this study, we 

addressed this by developing a more versatile system aimed at 

verifying 4-class classification accuracy. In our experiment, 

four machine voices with different modulation frequencies (32, 

36, 40, and 44 Hz) were adjusted so as to be heard from 

different directions (front, back, right, and left), and then 

played simultaneously through earphones. Five subjects were 

instructed to concentrate on a single voice determined 

randomly by on-screen instructions shown during the 

interstimulus intervals. Features were extracted by analyzing 

the resulting EEG signals using an SVM to perform learning 

and classification. Our experimental results showed an overall 

average classification accuracy (~40%) above the statistical 

baseline (25%). We consider this result as showing the 

possibility of realizing a 4-class ASSR-based BCI. However, 

the classification accuracy of the present system would have to 

be improved before it could be used in a real environment. In 

future work, we intend to isolate the individual voices and play 

them separately for shorter times. 
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