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Abstract. Behavior that a customer who has arrived at a queueing system leaves without joining the queue is 

known as the phenomenon of balking. Then, the phenomenon of balking has been treated as one of stochastic 

factors in the equilibrium analysis of queueing systems. Therefore, queueing systems with balking have been 

studied continually as one of significant subjects. Recently, the statistical mechanics model to analyze the 

equilibrium state of the M/M/1 queueing system with balking has been established based on the concept of the 

statistical mechanics explained by the relationship of the entropy and potential energy. In this study, the novel 

statistical mechanics model to analyze the equilibrium state of the M/M/s queueing system with balking is 

constructed by expanding the statistical mechanics model to analyze the equilibrium state of the M/M/1 

queueing system with balking. By using the statistical mechanics model constructed in this study, we can 

derive the equilibrium state probabilities and arrival rates of the M/M/s queueing system with balking 

depending on each queue length. Furthermore, it is shown through mathematical verifications that the novel 

statistical mechanics model is applicable to various types of Markovian queueing systems. We conclude that 

the novel statistical mechanics model in this study have general versatility to analyze Markovian queueing 

systems.  
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1. INTRODUCTION 
 

Queueing theory is well known as a theory concerned 

with stochastic fluctuations in the congestion phenomenon 

of the system. Many results of research about queueing 

theory have been presented. As one of those results, Guiasu 

(1986) has suggested a queueing model based on the 

maximum entropy principle as a mathematical model for 

analyzing the equilibrium state of the queueing system. 

Moreover, based on the maximum entropy principle, 

Arizono et al. (1991) has proposed an entropy model for 

analyzing the equilibrium state probability distribution of 

the M/M/s queueing system. Additionally, there are some 

studies that associated the concept of entropy with various 

queueing systems. See Wang et al. (2002), Jain and Dhakad 

(2003), Prabhakar (2003), Borzadaran (2009) and Singh 

and Tiwari (2013). 

Meanwhile, the phenomenon of balking has been 

treated as one of stochastic factors in the equilibrium 

analysis of queueing systems. Then, the balking means the 

behavior that a customer who has arrived at a queueing 

system leaves without joining the queue. Under 

consideration of the balking phenomenon, the arrival rate to 

the system is not constant, and varies depending on the 
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queue length of the system. Queueing systems with balking 

are studied continually as one of significant subjects in the 

recent years. See Montazer-Haghighi et al. (1986), Abou-

El-Ata and Hariri (1992), János (2011), El-Sherbiny (2012) 

and Jain et al. (2014). In the traditional equilibrium state 

analysis for queueing systems under the consideration of 

the balking phenomenon, it has been typically assumed that 

all arrival rates under the situation of each queue length are 

provided. For reference, Abou-El-Ata and Hariri (1992), 

János (2011) and El-Sherbiny (2012) have expressed arrival 

rates by a function depending on the queue length, 

respectively. 

In recent year, a novel model based on the concept of 

the statistical mechanics for analyzing the equilibrium state 

of the M/M/1 queueing system with balking has been 

proposed by Tamura et al. (2015). The concept of the 

statistical mechanics is explained based on both the entropy 

and potential energy. The entropy is interpreted as the 

criterion for evaluating the microscopic irregularity of 

systems, and the potential energy is interpreted as the 

criterion for evaluating the instability of systems. In the 

statistical mechanics, the entropy maximum principle and 

the energy minimum principle are understood as indivisible 

concepts of the pair (Chandler 1987). Therefore, in the 

statistical mechanics, the equilibrium state of the system is 

described by the balance of the entropy and potential 

energy. Specifically, the equilibrium state probability 

distribution is explained based on the balance of the 

entropic force and the energy force defined by the change 

of state in the system.  

In this study, we expand the statistical mechanics 

model presented by Tamura et al. (2015) for the M/M/1 

queueing system. Then, the novel statistical mechanics 

model to analyze the equilibrium state of the M/M/s 

queueing system with balking is constructed. Further, the 

equilibrium state probability and arrival rate depending on 

each queue length are derived based on the statistical 

mechanics model constructed in this study. In addition, 

through some comparisons between some traditional results 

about Markovian queueing systems and the results by the 

statistical mechanics model for the M/M/s queueing system, 

the versatility of the constructed statistical mechanics 

model for the analysis of Markovian queueing models is 

confirmed. 

 

2. STATISTICAL MECHANICS MODEL FOR 
M/M/s QUEUEING SYSTEM 

 

The concept of the statistical mechanics is explained 

based on both the entropy and potential energy. The 

entropy is interpreted as the criterion for evaluating the 

microscopic irregularity of systems, and the potential 

energy is interpreted as a criterion for evaluating the 

instability of systems. Then, in the concept of the statistical 

mechanics, the equilibrium state probability distribution of 

a system is derived by the relationship of the entropy and 

potential energy. In this section, we address respective 

definitions of the entropy and potential energy in the 

M/M/s queueing system with balking first. Next, based on 

the definitions of the entropy and potential energy, the 

statistical mechanics model for analyzing the equilibrium 

state of the M/M/s queueing system with balking is 

discussed. 

We consider the Markovian queueing system with s  

servers under consideration of the balking phenomenon. 

Then, each server has the service rate  , where   is 

known. And, it is assumed that the arrival rate in the 

condition without balking is known as  . However, it is 

assumed that the arrival rate varies depending on the queue 

length under the consideration of the balking phenomenon. 

Then, we describe the arrival rate under the situation that 

the queue length is n  as 
n . By using this notation, the 

arrival rate 
0  under the situation that the queue length is 

0 is indicated as 
0  , because it is natural that the 

balking does not occur in the situation that there is an 

available vacant server. On the other hand, it is also natural 

to suppose the relation of 
1n n    for 0n   as 

common sense. Finally, in the system design phase, as a 

guarantee that the state of the system does not diverge, we 

assume the traffic density   in the natural condition as 

/ ( ) 1s     in this study. 

In reference to Arizono et al. (1991) that have treated 

the entropy model for the M/M/s queueing system without 

balking, we define the statistical mechanics model for the 

M/M/s queueing system with balking. After this, we 

describe the state that the queue length is n  as state n . 

Then, we define the state probability of state n  as 
nP . 

Additionally, the state probability vector P is presented as 

 0 1 2, , , , ,nP P P P P . 

At first, whole states in the M/M/s queueing system 

are divided into two groups for 0 n s  　 and s n . 

Then, in the transition from state 1n  to state n  in the 

group of 0 n s  　, the total service rate varies depending 

on state n , that is, the total service rate in the transition 

from state 1n  to state n  is given as ( 1)n  . In such a 

case, state n  of 0 n s  　 can be divided into quasi-

states ( , )n i , 1 !/ !i s n  , consisting of !/ !s n  cases by 

considering the number of cases in the transitions from 

state s  to state n , 0 n s  　. See Arizono et al. (1991). 

Thus, the state probability 
nP  in the case of 0 n s  　 is 

represented as 

 

!/ !

,

1

, 0 ,
s n

n n i

i

P q n s


    (1) 

where ,n iq  means the state probability of the quasi-state 

( , )n i , 1 !/ !i s n  .  



 

On the other hand, in the group of s n , the service 

rate in the transition from state 1n  to state n  is 

constant as s . And, the transitions from state 1n  to 

state n  occur if a service at either server of s  servers is 

completed. Then, we divide state n  in this group of 

s n  into quasi-states ( , )n j , 1 j s  , consisting of s  

cases by considering the number of cases in the transitions 

from state 1n  to state n . Thus, the state probability 
nP  

in the case of n s  is supposed as 

 ,

1

, .
s

n n j

j

P q n s


    (2) 

where ,n jq  means the state probability of the quasi-state 

( , )n j , 1 j s  . 

In consequence, based on the quasi-state probabilities 

mentioned above, the entropy can be defined as 

  
1 !/ !

, , , ,

0 1 1

ln ln ,
s s n s

n i n i n j n j

n i n s j

H P q q q q
 

   

     (3) 

where interpret P  as the state probability vector 

constituted by the state probabilities 
nP  based on Eqs.(1) 

and (2).  

Next, we address the potential energy in the M/M/s 

queueing system with balking. As mentioned above, since 

the states of the M/M/s queueing system are divided into 

two groups of 0 n s  　 and s n , we should defined 

two kinds of the potential energy. Then, in the state of the 

group of 0 n s  　, waiting to receive the service does not 

occur because there are some available vacant servers. 

Therefore, we can consider that the balking does not occur 

in the case of 0 n s  　 even if a customer has arrived at 

the system increase. In such a case, Tamura et al. (2015) 

have indicated that the potential function can be defined as 

  1 , 0 .g n n n s   　 (4) 

Then, the potential function  1g n  can be interpreted as 

the function indicating the potential based on the increase 

of busy servers. Note that, in this study, the value of the 

potential function is called simply the potential. 

In contrast to the case of 0 n s  　, in the state of the 

group of s n , the customer who arrived newly to the 

M/M/s queueing system must wait by necessity. Then, 

separately from the potential based on the increase of busy 

servers, it is necessary to suppose the potential based on the 

increase of the customers waiting for service as the increase 

function against n　 in s n 　. In this case, the potential 

function based on the increase of the customers waiting for 

service as the increase function against n　 in s n 　 is 

described as  2g n . Then, we define  2 1g s   as the 

unit amount of the potential based on the increase of 

customers waiting for service. In addition, we can suppose 

 2 0g n   for 0 n s  　 in the potential function  2g n  

based on the increase of the customer waiting for service, 

because there is no customer waiting for service and the 

balking does not occur in this situation. 

In this study, based on the potential function  1g n , 

the potential energy  1U P  due to the increase of busy 

servers can be defined as follows: 

      
1 !/ !

1 1 , 1 ,

0 1 1

1 .
s s n s

n i n j

n i n s j

U P g n q g s q
 

   

     (5) 

Further, the potential energy  2U P  due to the 

increase of customers waiting for service can be defined as 

    2 2 ,

1

.
s

n j

n s j

U P g n q


 

  (6) 

In the concept of the statistical mechanics, the 

equilibrium state is described by the balance of the force 

due to the change in the state of the entropy and potential 

energy in the system. Here, the change of the state in the 

M/M/s queueing system can be shown by the change of the 

state probability 
nP . Therefore, the entropic force and 

energy force associated with change of the state probability 

distribution of the M/M/s queueing system. It can be 

evaluated by the partial differential regarding the state 

probability vector P  of each function  H P ,  1U P  

and  2U P . Furthermore, the directions of the entropic 

force and the energy force are opposite (See Tribus and 

McIrvine. 1971). In consequence, based on the concept of 

the statistical mechanics, the equilibrium state for the 

M/M/s queueing system is established on basis of the 

relationship of  

      1 1 2 2 ,H P U P U P
P P P

 
  

 
  

 (7) 

where 
1  and 

2  are given as undetermined multipliers 

for according the respective dimensions (units) of the 

energy forces associated with  1U P  and  2U P to the 

dimension (unit) of the entropic force associated with 

 H P . In addition, because the queueing system is a 

probability system, we consider the following constraint: 

 

1 !/ !

, ,

0 0 1 1

1.
s s n s

n n i n j

n n i n s j

P q q
  

    

      (8) 

Thus, we define the statistical mechanics model for 

analyzing the equilibrium state of the M/M/s queueing 

system with balking as follows: 

 

   

   

1 2 3

1 1 2 2

1 !/ !

3 , ,

0 1 1

, , ,

1 0,
s s n s

n i n j

n i n s j

P H P
P

U P U P
P P

q q
P

  

 


 

   


 



 
 

 

 
    

  
 

 

(9)

 



 

where 
3  indicate a undetermined multiplier for the 

constraint of Eq.(8). Each of undetermined multipliers can 

be understood as Lagrange multiplier. Then, the statistical 

mechanics model can be treated as a first-order condition 

regarding Lagrange function 

 

3. DERIVATION OF EQUILIBRIUM STATE 
PROBABILITY DISTRIBUTION BASED ON 
STATISTICAL MECHANICS MODEL FOR 
M/M/S QUEUEING SYSTEM 

 
From Eq.(9) presenting the statistical mechanics 

model, we obtain the following equation in the case of 

0 n s  　:  

    , 3 1 1ln 1 .n iq g n      (10) 

Accordingly, the equilibrium state probability ,n iq  of the 

quasi-state ( , )n i , 0 n s  　 and 1 !/ !i s n  , is derived 

as 

 
   3 1 11

, .
g n

n iq e e
   

  (11) 

Further, by representing 
 31

e
 

 and 1e


 in Eq.(11) as 

  and  , the equilibrium state probability 
nP  of 

Eq.(1) can be obtained as: 

 
 1

!/ !

,

1

!
, 0 .

!

s n
g n

n n i

i

s
P q n s

n




     (12) 

Likewise, in the case of n s , we obtain 

      , 3 1 1 2 2ln 1 1 .n jq g s g n         (13) 

Then, the equilibrium state probability ,n jq  of the quasi-

state ( , )n j , n s  and 1 j s  , is derived as 

 
     3 1 1 2 21 1

, .
g s g n

n jq e e e
      

  (14) 

Accordingly, by representing 2e


 in Eq.(14) as  , the 

equilibrium state probability 
nP  of Eq.(2) can be obtained 

as follows: 
 

 
   1 21

,

1

, .
s

g s g n

n n j

j

P q s n s 




    (15) 

As the result, the equilibrium state probability distribution 

is described as: 

 

 

   

1

1 21

!
, 0 ,

!

, .

g n

n

g s g n

s
n s

nP

s n s



 



 

 
 

 (16) 

On the other hand, in the traditional statistical 

equilibrium analysis, we have the system of equilibrium 

equations under the arrival rates n  and the service rate 

  as follows: 

    

 

0 0 1

1 1 1

1 1 1

, 0,

1 , 1 ,

, .

n n n n n

n n n n n

P P n

P n P n P n s

P s P s P n s

 

   

   

  

  

 


     
    

(17) 

Then, as mentioned previously, waiting to receive the 

service does not occur because there are some available 

vacant servers in the states of 0 n s  　. Accordingly, we 

can consider that the balking does not occur in the case of 

0 n s  　 even if customers increase. For this reason, the 

arrival rates 
n , 0 n s  , can be given as 

n  . Thus, 

Eq.(17) is rewritten as: 

    

 

0 1

1 1

1 1 1

, 0,

1 , 1 ,

, .

n n n

n n n n n

P P n

P n P n P n s

P s P s P n s

 

   

   

 

  

 


     
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 (18) 

Then based on Eq.(18), we can describe the equilibrium 

state probability distribution as: 

 

0

1

1

0

, 0 ,
!

, ,
!

n

n
n s

k

k s

n s

a
P n s

n

P
a a

P n s
s s










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
 

 



 (19) 

where let 
n na   , n s . 

On the other hand, by substituting  1 0 0g   and 

 1 1 1g   into Eq.(16), we have the followings: 

 0 .
!

P

s
   (20) 

 
1 0.P P  (21) 

Then, since we have the relation 
0 1P P   in Eq.(18),   

in Eq.(21) can be obtained as 

 ,a





  (22) 

Furthermore, from Eq.(18), the following relationship 

can be shown: 

   2 11 .s s sP s P s P         (23) 

Hence, by substituting 
1sP 
, 2sP   and 

sP  of Eq.(16) into 

Eq.(23),   can be derived as follows: 

 .
s


 


   (24) 

Finally, based on the statistical mechanics model 

constructed in this study, the equilibrium state probability 

distribution of the M/M/s queueing system with balking is 

given as  
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0

1

0

, 0 ,
!

, ,
!

n

n g ns

a
P n s

n
P

a
P n s

s





 


 





 (25) 

where 
0P  is represented as 

 
 

 

2
1

11

0

0 ! 1 !

g nn ss

n n s

a a
P

n s




 

 

  
  

  
  . (26) 

Additionally, by comparing the Eq.(19) and Eq.(25), 

the arrival rate 
n  can be shown as follows: 

 
   2 21 1

, 0 ,

, .
n g n g n

n s

n s





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 
 


 (27) 

Then, from the relationships of 1   as the prerequisite 

and 
1n n    as the assumption under the balking 

phenomenon, the following inequality for the potential 

function  2g n  is derived: 

    2 21 1g n g n   . (28) 

In this study, as a monotonically increasing function to 

satisfy the condition of Eq.(28), we assume the potential 

function  2g n  as 

    2 1 ,
r

g n n s    (29) 

where r  means a system parameter to control the strength 

of balking, and then 1r  . 

Under the potential function  2g n  of Eq.(29), the 

equilibrium state probability distribution is represented as 

 
 

0

1 1

0

, 0 ,
!

, .
!

r

n

n s
n s

a
P n s

n
P

a
P n s

s


  


 


 
 


 (30) 

In this case of 1.0r  , the equilibrium state probability 

distribution can be easily obtained as 

 

0

0

, 0 ,
!

, .
!

n

n s
n

a
P n s

n
P

s
P n s

s



 


 
 
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 (31) 

Eq.(31) is known as the equilibrium state probability 

distribution without balking based on the traditional 

statistical equilibrium analysis in the M/M/s queueing 

system. From this result, it is obviously found that the 

equilibrium state probability distribution for the M/M/s 

queueing system without balking can be obtained as a 

special case of 1r   in the statistical mechanics model 

constructed under the consideration of the balking 

phenomenon. Furthermore, as a matter of course, we can 

easily show that the statistical mechanics model for the 

M/M/1 queueing system with balking proposed by Tamura 

et al. (2015) is derived as a special case of 1s   in the 

statistical mechanics model for the M/M/s queueing system 

with balking of this study. Then, the statistical mechanics 

model for the M/M/s queueing system in this study can be 

understood as the analysis model expanding the statistical 

mechanics model by Tamura et al. (2015). From the 

verification with regard to the M/M/s queueing system 

without balking and the M/M/1 queueing system with 

balking, we can conclude that the statistical mechanics 

model for the M/M/s queueing system under the 

consideration of the balking phenomenon is the versatile 

and convenient analysis model of Markovian queueing 

systems.  

 

4.  NUMERICAL ANALYSIS 
 

In this section, we illustrate some numerical results 

based on the proposed statistical mechanics model for the 

M/M/s queueing system with balking. First, we set the 

service rate of each server as 25.0  . Next, the traffic 

density in the condition without balking is given as 

0.8  . Under these settings, by changing the values of 

the system parameter r  and the number of servers s , we 

investigate the influence of balking based on the proposed 

statistical mechanics model for the M/M/s queueing system 

with balking. As self-evidence, the arrival rate   against 

each number of servers s  is derived based on the relation 

of 0.8s    . As the result, the arrival rate   in 

the condition without balking is different by the number of 

servers s . In the statistical mechanics model for the 

M/M/s queueing system with balking, the potential function 

 1g n  and  2g n  are respectively assumed as 

 1g n n  and    2 1
r

g n n s    in this study.  

In Figure 1, we illustrate the relationship between the 

queue length n  and the arrival rate 
n  in the case of 

1s  . From Figure 1, since the arrival rate 
n  satisfies 

the relationship of 
1n n   , the influence of balking 

considered in this study has been successfully explained. In 

addition, it is found that the arrival rate 
n  decreases 

faster by a larger system parameter r . This fact means that 

the influence of balking becomes stronger when the system 

parameter r  is large. On the other hand, remark that the 

situation of 1.00r   corresponds to the M/M/1 queueing 

system without balking as mentioned previously. Therefore, 

the arrival rate n  are constant as 20   in the case of 

1.00r  . Moreover, we can see that the result in the case of 

1s   is consistent with the result of Tamura et al. (2015). 

As a consequence, we can confirm that the proposed 

statistical mechanics model for the M/M/s queueing system 



 

involves the statistical mechanics model for the M/M/1 

queueing system presented by Tamura et al. (2015).  

Similarly, in Figure 2 and 3, under some values of the 

system parameter r  to control the strength of balking, we 

illustrate the relationships between the queue length n  

and the arrival rate 
n  in the case of 2s   and 3s  , 

respectively. Since the traffic density   is fixed at 0.8 , 

the arrival rate   in the natural condition is derived as 

40  in the case of 2s   and 60  in the case of 3s  . 

Additionally, in the cases of 2s   and 3s  , it can be 

seen that the phenomenon of balking occurs in 2n   and 

3n  , respectively. Conversely, the phenomenon of 

balking never occurs in n s . Because a customer who 

has arrived at the system in the situation of n s  can 

receive service immediately, this feature is rational. Just for 

the record, note that this feature has been shown in Eq.(27) 

mathematically.  

Next, we illustrate the relationship between the queue 

length n  and the equilibrium state probability 
nP  in the 

case of 1s  , 2s   and 3s   in Figure 4, 5 and 6, 

respectively. According to the increase of the system 

parameter r , the shape of the equilibrium state probability 

distribution changes to sharper shapes. This feature also 

implies that the increase of the system parameter r  makes 

the effect of balking stronger. That is, we can find that this 

feature has been derived from the result that the increase of 

r  decreases 
n . 

Here, we can evaluate the expected arrival rate n  as  

 
0

.n n n

n

P 




  (32) 

In Figure 7, we illustrate the relationship between the 

system parameter r  and the expected arrival rate n  in 

the case of 3s  . From Figure 7, it is seen that the 

expected arrival rate n  decreases according to the 

increase of the system parameter r . Therefore, we know 

that the influence of balking becomes stronger by the large 

system parameter r . Remark that the same feature has 

been confirmed in any case of the different number of 

servers.  

 

5. CONCLUDING REMARKS 
 

In this paper, based on the concept of the statistical 

mechanics, we have addressed the mathematical modeling 

for analyzing the M/M/s queueing system with balking. As 

the result, the novel statistical mechanics model has been 

successfully proposed for deriving the equilibrium state 

probability distribution. Therefore, it has been shown that 

the proposed statistical mechanics model can derive the 

rational equilibrium state probability distribution under the 

consideration of the balking phenomenon. Further, the  

 

 
 

Figure 1: the relationship between the queue length n  and 

the arrival rate 
n  in the case of 1s   

 

 
 

Figure 2: the relationship between the queue length n  and 

the arrival rate 
n  in the case of 2s   

 

 
 

Figure 3: the relationship between the queue length n  and 

the arrival rate n  in the case of 3s    



 

 
 

Figure 4: the relationship between the queue length n  and 

the equilibrium state probability 
nP  in the case of 1s   

 

 
 

Figure 5: the relationship between the queue length n  and 

the equilibrium state probability 
nP  in the case of 2s   

 

 
 

Figure 6: the relationship between the queue length n  and 

the equilibrium state probability nP  in the case of 3s   

 
 

Figure 7: the relationship between the system parameter r  

and the expected arrival rate n  in the case of 3s   

 

 

arrival rate for each state of waiting consumers is also 

obtained under the consideration of balking. Then, we can 

evaluate the expected arrival rate in the M/M/s queueing 

system with balking. 

Moreover, it has shown that the equilibrium state 

probability distribution based on the proposed statistical 

mechanics model involves both the equilibrium state 

probability distribution for the M/M/s queueing system 

without balking based on the traditional statistical 

equilibrium analysis and the equilibrium state probability 

distribution for the M/M/1 queueing system with balking, 

as respective special cases. Through the mathematical 

verification, it has been shown that the novel statistical 

mechanics model is applicable to various types of 

Markovian queueing systems. Therefore, we conclude that 

the novel statistical mechanics model in this study have 

general versatility to analyze Markovian queueing systems. 

We would like to address the optimization problem of 

the M/M/s queueing system under the consideration of the 

balking phenomenon as a future study. In such a case, the 

estimation of the system parameter r  based on the 

observation of the queueing system should be required. 

These issues will be with future challenges.  
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