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Abstract. Project selection problem has been largely discovered in extant literature, and attracted 

considerable attentions of academics and purchasing managers. Practical project selection problem is typically 

evolved of multi-criteria and a committee of experts. Given the exact values of the input data, certain expert 

may generate uncertain evaluation results on a project, because the exact weights associated with multi-

criteria are difficult to reach consensus. SMAA-2 method is an effective tool to deal with stochastic multi-

criteria decision making problem. In this paper, we first formulate the interval data describing all experts’ 

judgment on all project s, and then apply SMAA-2 method to provide a fully rank of all candidate project s. 

The rank acceptability indices and holistic rank indices are obtained to support the project selection. A 

numerical example drawn from the previous paper is recalculated to show the effectiveness of our approach. 
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1. INTRODUCTION 
 

The Project selection problem has received 

considerable attention in both decision analysis and supply 

chain management literature, and is becoming a fertile 

research topic for operations research and management 

science disciplines. Ho et al. (2010) exhaustively review 

the individual and integrated decision making approaches 

from 2000 to 2008 to aid the project selection problem. 

Chai et al. (2013) complementarily provide a systematic 

literature review of the decision making techniques 

assisting project selection from 2008 to 2012, which 

classifies the mentioned techniques into three categories: 

multiple criteria decision making (MCDM) techniques, 

mathematical programming techniques and artificial 

intelligence techniques.  

 

The contemporary project management requires 

decision maker to maintain strategic partnership with few 

but reliable project s (Ho et al., 2010), which effectively 

reduce the project costs and improve the competitive 

advantages (Ghodsypour and O’Brien, 2001). Therefore, 

besides conventional price factor, promising project 

selection policy should also depend on a broad spectrum of 

qualitative and quantitative criteria such as quality, delivery, 

flexibility and lead time et al. (Chen et al., 2006). Dickson 

(1966) has identified 23 criteria to be considered during the 

process of the project manager determines project selection. 

   

The project selection problem examined in this paper 

is described as follows. A set of   candidate project s are 

evaluated in terms of   criteria, with the involvement of a 

group of   experts. Each expert   has specific preference 

on the ordering of criteria importance. In the presence of 

deterministic values for each project associated with each 

criterion, each expert knows the lower and upper bounds 
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about the evaluation results for each project. Therefore, 

individual expert may produce interval evaluation values to 

measure the performance of each project, such that an 

interval project selection matrix (ISSM) is formulated to 

support project evaluation and selection. Different experts 

may generate different intervals for certain projects. The 

interval formulation is motivated from the observation that 

in the domain of MCDM, different weight elicitation 

methods may generate different weights even for the same 

problem, and it is difficult to reach consensus about exact 

weights (Lahdelma and Salminen, 2001). Evaluating a set 

of project s using interval values is an important issue in 

decision analysis. The purpose of this paper is to develop a 

sophisticated technique for solving the aforementioned 

ISSM, and provide a comprehensive rank of the candidate 

project s. Although the large body of research on 

multicriteria project selection in literature is helpful to 

effectively guide project manager to choose appropriate 

projects, it is crucial to understand the impact of interval 

values on project evaluation and selection. To the best of 

our knowledge, the extant literature has left this interesting 

and important topic largely unexplored. The present study 

fills this gap by first formulating the ISSM and then 

applying stochastic multicriteria acceptability analysis 

(SMAA-2) to provide a holistic rank of candidate projects. 

Such investigation sheds much-needed light on potential 

incentives and directions for academic, managerial and 

policy-related implications.  

 

Pioneered by Lahdelma et al. (1998), SMAA is a 

method intended to aid MCDM with multiple experts in 

cases where little or no weight information is available, and 

the criteria values are uncertain. It does not need the 

experts to describe their input data precisely or implicitly, 

and provides several meaningful and useful indices 

including acceptability index for each alternative measuring 

the variety of input data that give each alternative the best 

ranking position, central weight describing the preferences 

of an expert supporting an alternative, and confidence 

factor representing the reliability of the analysis. Lahdelma 

and Salminen (2001) extend SMAA by considering all 

ranks, and provide holistic SMAA-2 analysis to identify 

good compromise alternatives. For the problems with 

ordinal criteria information, Lahdelma et al. (2003) develop 

a new SMAA-O method. Durbach (2006) propose a SMAA 

using achievement functions (SMAA-A) for discrete-

choice decision that investigating what combinations of 

aspirations are necessary to make each alternative the 

preferred one. Lahdelma and Salminen (2006a) develop 

cross confidence factors based upon calculating confidence 

factors for alternatives using other’s central weights. 

Lahdelma and Salminen (2006b) combine DEA and 

SMAA-2 to evaluate multicriteria alternatives. Lahdelma 

and Salminen (2009) develop the SMAA-P method that 

combines the piecewise linear difference functions of 

prospect theory with SMAA. Lahdelma et al. (2006, 2009) 

present and compare simulation and multivariate Gaussian 

distribution methods to treat the uncertainty and 

dependency information about the SMAA-2 MCDM. 

Tervonen and Lahdelma (2007) present efficient methods 

for performing the computations through Monte Carlo 

simulation, analyze the complexity and evaluate the 

accuracy of the developed algorithms. Corrente et al. 

(2014) integrate SMAA and PROMETHEE methods to 

explore the parameters compatible with preference 

information provided by the decision maker. Angilella et al. 

(2015) and Angilella et al. (2015) combine the Choquet 

integral preference model with SMAA to obtain robust 

recommendations and robust ordinal regression, 

respectively. Durbach and Calder (2015) investigate the 

context where decision makers are unable or unwilling to 

assess trade-off information precisely in SMAA. 

 

Besides the method development on SMAA, there 

exist substantial application papers in literature: facility 

location (Lahdelma et al., 2002), forest planning (Kangas et 

al., 2006), elevator planning (Tervonen et al., 2008), 

descriptive multiattribute choice model (Durbach, 2009a), 

estimation of a satisficing model of choice (Durbach, 

2009b), DEA cross efficiency aggregation (Yang et al., 

2012), mutual funds’ performance assessment (Babalos et 

al., 2012) and project portfolio optimization (Yang et al., 

2015). 

 

The main contribution of this paper is summarized as 

follows. First, we formulate an ISSM to describe the 

project selection problem, in which each expert has specific 

but uncertain evaluation results on a set of candidate 

project s. Therefore, the project selection problem with 

interval values is deemed as a stochastic optimization 

problem. Second, SMAA-2 is introduced, along with the 

concepts of rank acceptability index, central weight vector 

and confidence factor. Third, we apply SMAA-2 to the 

project selection problem with interval data, and propose a 

holistic rank of the candidate project s. Even though the 

classical project selection problem has been largely 

explored in literature, such investigation in this study is 

completely new and of both academic and practical 

significances and values.  

The reminder of this paper is organized as below. Section 2 

presents the problem description. Section 3 introduces 

SMAA-2 and some related important indices. Section 4 

applies SMAA-2 to solve the project selection with interval 

inputs. Section 5 concludes this study and proposes some 

future directions. 

 

2. PROBLEM FORMULATION 
 

The project selection problem studied in this paper is 

modeled as follows. A set of I candidate projects are 



 

evaluated in terms of J  criteria, with the involvement of a 

committee of K experts. All criteria are assumed to be 

benefit. With regard to the cost-type criteria, we may take 

the transformation of negativity or reciprocal. Therefore, 

the basic framework of the multi-criteria project selection 

problem is depicted by a decision matrix 

IJ ij IJ
G x    : 

, 

11 12 1

21 22 2

1 2

J

J

IJ

I I IJ

x x x

x x x
G

x x x

 
 
 
 
 
 

     (1) 

Where 
 , 0,1 , 1,2,..., , 1,2,...,ij ijx x i I j J  

 are exact 

values for all experts and have been normalized to 

eliminate the effect of magnitude of data. The evaluation 

score of a project is calculated by the weighted sum of 

criteria measures with respect to the mentioned project, that 

is,  

1

, 1,2,...,
J

i ij ij

j

S x w i I


   , (2) 

Where ijw
 are the weights of criterion j  associated with 

project i , and 1

1, 0
J

ij ij

j

w w


 
. 

 

Each expert , 1,2,...,k k K  is identified by a specific 

preference on the sequence of criteria. Without loss of 

generality, we assume that for typical expert , 1,2,...,k k K , 

the criteria are arranged in a descending order of 

importance, that is 1 2

k k k

i i iJw w w  
. This sequence 

definitely changes across different experts. Therefore, 

certain expert , 1,2,...,k k K may formulate the following 

mathematical model to aggregate the most favorable 

performance for each project i  : 

1

max
J

k k

i ij ij

j

US x w


 
 

         s.t. 1 2 , 1,2,...,k k k

i i iJw w w i I   
,      (3) 

1

1, 0, 1,2,..., , 1,2,...,
J

k k

ij ij

j

w w i I k K


   
. 

Theorem 1 (Ng, 2008). The optimal score of project 

i  derived from the mathematical model (3) is  
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1

1
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Proof.  After denoting 

( 1) 0, 1,2,..., 1, 0k k k k k
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We also incorporate
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Therefore, the mathematical model (3) is equivalent to the 

following formulation: 
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J

k k k
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j
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 s.t.

1

1
J
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j
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 0, 1,2,...,k

ij j J   .   

The dual of (6) is 

 min k

iz    



 

 s.t.
1k k

i ijz
j
 .          (7) 

The optimal objective value of (7) is obtained at the 

point that
1,2,...,

1
maxk k

i ij
j J

z
j




 
  

  , which is the optimal 

objective value of (3) in terms of
1,2,...,

1
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j
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t

US x
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.  

This is the most favorable evaluation values 

determined by expert k  for project i , with the given input 

of decision matrix (1). Given the determined sequence of 

criteria provided by typical expert, model (3) is easy-to-

understand and simple-to-apply, and can be effectively 

solved without the elicitation of the exact values of weights.  

 

Similarly, it is also necessary to consider the least 

favorable evaluation scores by expert k  for project i . 

Therefore, an analogous mathematical model is presented 

below: 

 

1
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i ij ij

j
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Theorem 2. The optimal score of project i  derived 

from the mathematical model (8) is 
1,2,...,

1

1
min

j

it
j J

t

x
j



 
 
 


. 

On the strength of the obtained least and most 

favorable evaluation scores for project i  by expert k , we 

formulate an ISSM 
 ,k k

IK i i
IK

LS US      that describes 

the uncertain judgment of each expert on each project. 

Reasonable evaluation of project i  by expert k  should 

lie in 
,k k

i iLS US   : 
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.    (9) 

 

Be consistent with Yang et al. (2012), the derived 

ISSM can be viewed as a stochastic MCDM problem. In 

the following section, we briefly introduce the SMAA-2 

method proposed by Lahdelma and Salminen (2001), which 

effectively solves these series of stochastic MCDM 

problems by providing a holistic rank of all alternatives. 

 

3. STOCHASTIC MULTICRITERIA 
ACCEPTABILITY AALYSIS 

 

SMAA represents a family of methods for assisting 

MCDM with uncertain, imprecise or partially missing input 

data. The rationale behind SMAA is exploring the weight 

space to describe the preferences that make each alternative 

the most preferred one, or grant a certain ranking position 

for a specific alternative. Lahdelma et al. (1998) initiate the 

adventure on this topic, and propose rank acceptability 

index, central weight vector and confidence factor for all 

alternatives. Lahdelma and Salminen (2001) extend the 

original SMAA method by considering all ranks in the 

analysis, and provide more holistic SMAA-2 analysis to 

graphically identify good compromise alternatives.  

 

3.1 Preliminaries 

 

In line with the ISSM introduced in Section 2, we 

consider that a committee of K  experts has a set of I  

projects to be evaluated and selected. Neither expert-

specific evaluation values nor weights are precisely known. 

We assume that the decision maker’s preferences across all 

experts’ evaluations can be represented by a real-value 

utility function
 ( , ), = 1,2,...,g i w i I

, where the weight 

vector w  is to quantify decision maker’s subjective 

preferences across experts’ judgments. Moreover, the 

uncertain evaluation values from experts on projects are 

represented by stochastic variables ik  with assumed or 

estimated density function 
( )f 

 in the space
I KX  . 

In addition, the unknown weight vector is represented by a 



 

weight distribution with density function ( )f w  in the set 

of feasible weights defined as 

1

: 1, 0
K

K

k k

k

W w w w


 
    
 


.  (10) 

Total absence of weight vector information is 

represented in “Bayesian” spirit by a uniform weight 

distribution in W , i.e., 

1 ( 1)!
( )

(W)

K
f w

Vol K


 

.  

Based upon the above descriptions, the utility function 

is then used to map the stochastic experts’ evaluation values 

and weight distributions into utility 

distributions
( , )ig w

.  

 

We define a ranking function denoting the rank of 

each project as an integer from the best rank (=1) to the 

worst rank (= I ) as follows: 

( , ) 1 ( ( , ) ( , ))i l i

l

rank w g w g w     
,      (11) 

Where 
(true) 1 

 and
(false) 0 

. 

 

The SMAA-2 method is totally relied on analyzing the 

sets of favorable rank weights 
 r

iW 
 defined as 

    : ,r

i iW w W rank w r   
,          (12) 

in which a weight 
 r

iw W 
 guarantees that alternative 

i  obtains rank r .  

 

3.2 Indices 

 

This subsection introduces several useful indices 

proposed by SMAA-2 method. The first one is the rank 

acceptability index 
r

ib
, which is described as the expected 

volume of the set of favorable rank weights. More 

specifically, 
r

ib
 measures the variety of different 

valuations that grant alternative i  rank r , which is 

computed by 

          

   
 r

i

r

i

X W

b f f w dwd



   
.         (13) 

Obviously, the rank acceptability index 

r

ib
 belongs 

to the interval
 0,1

, while 
0r

ib 
 shows that the 

alternative i  never reaches rank r , and 1r

ib   

represents that the alternative i  always obtains rank r , 

neglecting the impact of the choice about weights. 

Furthermore, the rank acceptability index can be employed 

directly in the multi-criteria evaluation of the alternatives. 

For large-scale problems, we develop an iterative process 

as below, in which the n  best ranks (nbr) acceptability are 

analyzed at each interaction n : 

                 

1

n
n r

i i

r

a b


 .               (14) 

The nbr-acceptability 
n

ia  is a measure of the variety 

different preferences that grant alternative i  any of the 

n  best rank. This analysis proceeds until one or more 

alternatives obtain a sufficient majority of the weights.  

 

The weight space with respect to the n  best rank 

associated with an alternative can be depicted by the 

concept of central nbr weight vector 

n

iw
 as below: 

 . 

   
 1

/
r

i

n
n n

i i

rX W

w f f w wdwd a



 


  
    (15) 

Considering the given weight distribution, the central 

nbr weight vector is the best single vector representation 

for the preferences of a decision maker who assigns an 



 

alternative any rank from 1 to n . 

 

The third proposed index is the nbr confidence 

factor
n

ip
, which is defined as the probability that the 

alternative reaches any rank from 1 to n  if the central nbr 

weight vector is determined and computed by  

          

 
: ( , )n

i i

n

i

rank w

p f d

 

  
.       (16) 

More detailed knowledge about these indices can be 

found in Lahdelma and Salminen (2001). The manual on 

implementing SMAA in practice is provided by Tervonen 

and Lahdelma (2007). 

 

3.3 Holistic evaluation of rank acceptability 

 

On the strength of the aforementioned rank 

acceptability, the following step is to develop a 

complementary approach that combines the rank 

acceptability into holistic acceptability indices associated 

with all alternatives as below 

      

1

I
h r r

i i

r

a b


 ,        (17) 

Where 
r  are described as metaweights for 

constructing holistic acceptability indices and 

satisfy
1 21 0I       . 

The elicitation of so-called metaweights is essential a 

weight determination process about a lexicographic 

decision problem, which reasonably assign the largest value 

to
1 , and the least value to

I . As for assigning weights to 

ranks, Barron and Barrett (1996) introduce three 

mechanisms, namely, rank-sum approach, i.e., 

 
 

 

2 1
, 1,2,...,

1

r
I r

RS r I
I I


 

 
 , reciprocal of the ranks 

approach, i.e.,

 

1

1

, 1,2,...,
1

r

I

r

rRR r I

r





 


, 

and rank-order centroid approach, i.e., 

 
1

1 1
, 1,2,...,

I
r

r

ROC r I
I r




 
.  

We use ROC to determine 
, 1,2,...,r r I 

 

because they are more accurate, straightforward and 

efficacious, and provide an appropriate implementation tool 

(Barron and Barrett, 1996). 

 

The holistic evaluation of rank acceptability indices 

generates an overall measure of the acceptability of all 

alternatives. This is helpful to effectively rank and sort 

alternatives. 

 

4. NUMERICAL EXAMPLE 

 

For the purpose of applying SMAA-2 to solve project 

selection problem, we draw the data from the multiple 

criteria project selection problem studied by Xia and Wu 

(2007). Three criteria, namely, price, quality and service are 

rated using the three-point scale, i.e., 1, 2 and 3, which 

indicate “low”, “middle” and “high” for price criterion, and 

“good”, “middle” and “poor” for quality and service 

criteria. The problem is to select 5 out of 14 candidate 

projects, with the involvement of a committee of 6 experts. 

Each expert has specific preference on the criteria 

importance, i.e., price quality service, 

price service quality, quality  price service, 

quality service  price, service  price quality and 

service quality  price, which are denoted by notations 

“1”, “2”, “3”, “4”, “5” and “6”, respectively.  

 

 

Table 1: Data for project selection 

 

 

The ISSM 
 ,k k

IK i i
IK

LS US    
is obtained by 



 

formulations (3) and (8), in which the interval evaluations 

on all projects by all experts are reported in the following 

Table 2. 

 

 

 

 
Table 2: Interval project selection matrix 

 

Furthermore, the metaweights to formulate the holistic 

acceptability indices are 

 12 1.00 0.69 0.54 0.44 0.36 0.30 0.25 0.20 0.16 0.13 0.10 0., , 07, , , 0, , , .05, , 0, , 2,0. 

.  (18) 

The SMAA-2 model can be effectively solved by the 

open source software developed by Tervonen (2014). 

 

4.1 Normal Distribution 

We assume that the interval data 
,k k

i iLS US    are 

normally distributed, the mean and variance of which are 

represented by 2

k k
k i i
i

LS US





 and
 2

6

k k
k

i i

i

US LS





, 

respectively. The results about the rank acceptability 

indices and the holistic acceptability indices derived 

according to SMAA-2 are shown in Table 3 and graphically 

reported in Figure 1. 

 

 

 

 

Table 3: Holistic acceptability indices and rank 

acceptability indices (Normal distribution) 

 

 

 

Figure 1: Rank acceptability indices (Normal distribution). 

 

Based upon the holistic acceptability indices in Table 

3, we obtain a full and comprehensive rank of all 

projects: 6 3 7 8 10 13 14 4 11 12 9 2 5 1 . 

The selected projects are projects 6, 3, 7, 8 and 10. More 

specifically, the most favorable project is project 6, whose 

holistic rank index is 97.08% and first rank support is 91% 

of the possibility, while the least favorable project is project 

1, the holistic rank index and the last rank support of which 

are 3.07% and 64% of the possibility, respectively. 

 

4.2 Uniform distribution 

 

We alternatively assume that the interval data are 

uniformly distributed. With such assumptions, we report 

the holistic acceptability indices and the rank acceptability 

indices in the following Table 4 and Figure 2. 

 

 

 

 

 

 

 

 

 



 

Table 4:  Holistic acceptability indices and rank 

acceptability indices (Uniform distribution) 

 

 

Figure 2: Rank acceptability indices (Uniform distribution). 

 

It is observed that the sequence of candidate projects 

using SMAA-2 under uniform distribution 

are:

6 3 7 8 10 13 14 4 11 12 9 5 2 1 , 

and the  selected projects are projects 6, 3, 7, 8 and 10 as 

well. This sequence is mildly different from that derived 

from norm distribution case. The only difference lies in the 

rank positions of projects 2 and 5. In details, the most 

favorable project 6’s holistic rank index is 93.59% and first 

rank support is 82% of the possibility, both of which are 

lower than that of normal distribution case. Meanwhile, the 

holistic rank index and last rank support possibility of the 

least favorable suppler 1 are 3.62% and 41%, respectively.  

In summary, SMAA-2 under both the normal 

distribution and uniform distribution assumptions may 

produce complete ranks with sufficient discrimination 

power among all alternatives, in the case of that each expert 

has uncertain evaluations across all projects. 

 

4. CONCLUSION 

 

Multi-criteria project selection problem with the 

involvement of a group of experts has been widely 

explored in decision science and supply chain management 

literature. Given the exact input data, different experts may 

generate uncertain evaluation results for all projects. 

However, the extant literature has left this topic largely 

undiscovered. This paper is initially engaged in this 

tremendous surge by first formulating the interval values to 

optimize, and then innovatively applying the SMAA-2 

method to obtain an overall rank over all candidate projects. 

The interval data are assumed to be either normally or 

uniformly distributed in this study, and a metaweight 

scheme to derive holistic rank indices is elicited from the 

previous literature. A numerical example from the existing 

work is reexamined to show the effectiveness of our 

approach.  

 

This paper not only provides the decision maker with 

more methodological options, but also enriches the theory 

and method of project selection problem. Future research 

should consider the determination of the uncertain sets for 

decision making, and investigate more practical 

distributions over the uncertainties.  
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