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Abstract. In the case of binary state reliability system, importance measures of components consisting a system, such as 

structural importance measure, Birnbaum importance measure, criticality importance measures and some other importance 

measures, have been proposed and used effectively for practical risk and safety problems. When we want to judge which 

component or factor should be maintained first to improve the system’s performance, the importance measure suggests us 

that the most important component in a sense of an importance measure should be the first candidate. But these measures 

are not necessarily defined clearly from a stochastic theoretical point of view, and also extensions of them to the case of 

multi-state systems are not sufficiently achieved. In this paper, we show stochastically clear definitions of these importance 

measures with basic mathematical ideas behind them. The definitions do not need a usually assumed stochastic 

independence among components and then we may naturally extend the measures for the binary case to the multi-state case 

in various ways. An algorithm to give an extended Birnbaum importance measure from minimal state vectors which 

uniquely determine the structure function of the system is also given. And a calculation method of importance measures via 

a modular decomposition is also given.   
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1. INTRODUCTION 

 

Some notions of importance measures of components 

have been proposed and played a crucial role in reliability 

decision making. The well-known notions are structure 

(Barlow et al., 1975) and Birnbaum (Birnbaum, 1968, 1969), 

criticality (Bisanovic, et.al., 2013; Espiritu, et al., 2007), 

Barlow and Proschan’s (Barlow, et al., 1974) importance 

measures, which are based on the concept of critical state 

vectors. Fussell-Vesely’s importance measure (Fussell, 1975) 

and risk achievement and reduction worth (Cheok, et al., 

1998) also play important roles in reliability decision making. 

These importance measures have been summarized by Kuo, et 

al.(2012), where we can find various definitions of importance 

measures based on the fruits by structural studies of a binary 

state system. Many authors have studied about binary state 

systems and these studies have been summarized by Barlow, 

et al.(1975). See also Mine(1959), Birnbaum, et al.(1965), 

Birnbaum, et al.(1961) and Esary, et al.(1963). 

Systems and their components, however, could 

practically take many intermediate performance levels 

between perfectly functioning and complete failure states, and 

furthermore several states sometime can not be compared with 

each other. Mathematical studies about multi-state systems 

with totally ordered state spaces have been performed by 

many authors. See Barlow, et al.(1978), Griffith(1980), El-

Neweihi, et al.(1978), Natvig(1982), Ohi, et al.(1983)(1984) 

(1984), Ohi(2010). Huang, et al.(2003) have extended a binary 

state consecutive k-out-of-n system. Natvig(2011), Lisnianski, 

et al.(2003), Lisnianski, et al.(2010) have summarized the 

work performed so far, and we may find examples of practical 

applications of multi-state systems. Levitin(2008)(2005) 

(2004) have extensively applied the universal generating 

function（UGF）method for solving reliability problems of 

multi-state systems and showed its effectiveness. UGF method 

was first proposed by Ushakov(1987)(2000) as a stochastic 

evaluation method of multi-state systems, and is especially 

thought to be effective for the stochastic analysis of a system 

hierarchically composed of modules like series-parallel or 

parallel-series systems. Ohi(2014) has generally given 

stochastic upper and lower bounds for system's stochastic 

performances via modular decompositions, which are 

convenient for systems designers and analysts. Furthermore, a 

model of partially ordered state spaces is required for the 

reliability analysis in a situation that we can not say for two 

states which state is good or not. Such a model has been 

recently examined and some useful stochastic evaluation 

methods have been proposed. See Levitin(2013), Yu, et 

al.(1994), and Ohi(2012)(2013)(2014)(2015). 

We have some works about multi-state importance 

measures by Levitin, et al.(1999), Levitin, et al.(2003), 

Natvig(2011). Importance measures in the case of binary state 

systems, however, have not been sufficiently extended to 

multi-state systems. 



In this paper, we first present stochastic formulations of 

Birnbaum and criticality importance measures in the binary 

case. We especially show the consistency of the magnitude 

relations of Birnbaum and criticality importance measures for 

a series-parallel system which is well observed system‘s 

structure in a practical situation. This consistency tells us that 

it does not matter whichever Birnbaum or criticality 

importance measure we use for judging the importance of 

components. These two importance measures are commonly 

defined on the basis of critical state vectors, which may be 

derived from minimal path and cut vectors. We show a basic 

algorithm for the derivation and a chain rule of multiplication 

via a modular decomposition.  

Learning the binary case, we extend the Birnbaum 

importance measure in two ways to a multi-state system with 

totally ordered state spaces. The cardinal numbers of the state 

spaces are not necessarily the same. Our generalization is 

stochastically achieved and is based on the generalized critical 

state vectors, which are derived from the minimal and 

maximal state vectors corresponding to the minimal path and 

cut vectors of a binary state system, respectively. We also 

present that the chain rule of multiplication via a modular 

decomposition holds for a kind of Birnbaum importance 

measure. The chain rule is applied to a series-parallel multi-

state system to give Birnbaum importance measures. Because 

of the limitation of the number of pages, we omit extensions 

of other importance measures as criticality, Fussell-Vesely’s 

importance measures.  

 
2. NOTATIONS 

 

Finite sets 𝐶 = {1,2, ⋯ , 𝑛} , Ω𝑖  (𝑖 ∈ 𝐶)  and 𝑆  are 

respectively the set of the components, the state space of the 

𝑖 -th component and the state space of the system. 𝜑  is a 

mapping from Ω𝐶 = ∏ Ω𝑖𝑖∈𝐶  to 𝑆. The precise definition of 

a multi-state system is presented in Definition3.  

1. {𝑥; 𝐴} is the set of the element 𝑥 which satisfies the 

condition 𝐴.  

2. For two sets 𝐴 and 𝐵,  

𝐴 ∖ 𝐵 = { 𝑥 | 𝑥 ∈ 𝐴 , 𝑥 ∉ 𝐵 }. 

3. 𝑃( 𝐷 | 𝐸 )  is the conditional probability of the 

event 𝐷 with respect to the event 𝐸.  

4. For 𝐴 ⊆ 𝐶, Ω𝐴 = ∏ Ω𝑖𝑖∈𝐴 .  

5. An element 𝒙 of Ω𝐶  is precisely written as 𝑥 =
(𝑥1, ⋯ , 𝑥𝑛), where 𝑥𝑖 ∈ Ω𝑖  (𝑖 = 1, ⋯ 𝑛).  

6. Letting { 𝐵𝑗  | 1 ≦ 𝑗 ≦ 𝑚 } be a partition of 𝐴 ⊆

𝐶 , for 𝑥𝑗 ∈ ∏ Ω𝑖𝑖∈𝐵𝑗
 (1 ≦ 𝑗 ≦ 𝑚), 𝒙 = (𝑥1, ⋯ , 𝑥𝑚) is an 

element of Ω𝐴  such that 𝑃𝐵𝑗
(𝒙) = 𝑥𝑗 . Then for every 𝒙 ∈

Ω𝐴 (𝐴 ⊆ 𝐶),  

𝒙 = (𝒙𝐵1 , ⋯ , 𝒙𝐵𝑚), 

where 𝒙𝐵𝑗 = 𝑃𝐵𝑗
(𝒙) (𝑗 = 1, ⋯ , 𝑚) . 𝑃𝐵𝑗

 is the projection 

mapping from Ω𝐴 to Ω𝐵𝑗
.  

7. For 𝒙 ∈ Ω𝐴 (𝐴 ⊆ 𝐶), (𝑘𝑖 , 𝒙) (𝑖 ∈ 𝐴)  denotes the 

𝑖-th coordinate of 𝒙 is 𝑘. The symbol (⋅𝑖 , 𝒙) also denotes a 

state vector of Ω𝐴∖{𝑖} given by deleting 𝑥𝑖 from 𝒙 ∈ Ω𝐴 or 

a state vector 𝒙 ∈ Ω𝐴∖{𝑖}  attached with the empty 𝑖 -th 

coordinate. When 𝐴 = 𝐶, for 𝑖 ∈ 𝐶, 

(⋅𝑖 , 𝒙) = (𝑥1, ⋯ , 𝑥𝑖−1,⋅ , 𝑥𝑖+1, ⋯ , 𝑥𝑛) ∈ Ω𝐶∖{𝑖}. 

8. Every order is commonly denoted by the symbol ≦. 

𝑎 ≦ 𝑏 means 𝑏 is greater than or equal to 𝑎.  

9. For a subset 𝐴 of 𝑆, 𝜑−1(𝐴) is the inverse image 

of 𝐴 with respect to 𝜑. The bracket is sometimes dropped 

out without any confusion.  

10. For an element 𝑥  of an ordered set 𝑊 , intervals 

[𝑥, →) and (←, 𝑥] are defined as  

[𝑥, →) = {
𝑑𝑒𝑓

𝑦 ∈ 𝑊 | 𝑦 ≧ 𝑥},  (←, 𝑥] = {
𝑑𝑒𝑓

𝑦 ∈ 𝑊 | 𝑦 ≦ 𝑥}. 
11. 𝑀𝐼(𝑊)  and 𝑀𝐴(𝑊)  denote the set of all the 

minimal and maximal elements of a finite ordered set 𝑊 , 

respectively.  

12. ⊗ means the product probability.  

 

3. PRELIMINARY DEFINITIONS AND 

THEOREMS 
 

Definition 1. (Definition of a multi-state system) A multi-state 

system is a triplet (∏ Ω𝑖𝑖∈𝐶 , 𝑆, 𝜑)  satisfying the following 

conditions.  

(i) 𝐶 = {1,2, ⋯ , 𝑛}  denotes a set of the components 

consisting the system.  

(ii) Ω𝑖  (𝑖 ∈ 𝐶) and 𝑆 are finite totally ordered sets, which 

denote the state spaces of the component 𝑖 and the system, 

respectively. 

(iii) 𝜑 is a surjection from ∏ Ω𝑖𝑖∈𝐶  to 𝑆, called a structure 

function.   

When |Ω𝑖| = 2 (𝑖 ∈ 𝐶) and |𝑆| = 2  hold, the system is 

called a binary state system.  

 

Definition 2. (Increasing system) A system 𝜑 is called an 

increasing system, when the following condition is satisfied.  

∀𝒙, ∀𝒚 ∈ Ω𝐶  such that 𝒙 ≦ 𝒚, 𝜑(𝒙) ≦ 𝜑(𝒚). 
 

Theorem 1. For an increasing system (Ω𝐶 , 𝑆, 𝜑), we have  

 
∀𝒙 ∈ Ω𝐶 , 𝜑(𝒙) = max {  𝑡 | ∃𝒂

∈ 𝑀𝐼(𝜑−1[𝑡, →)), 𝒙 ≧ 𝒂 }. 
(1) 

 

Theorem 1 shows us that the structure function 𝜑 is 

uniquely determined by the family {𝑀𝐼(𝜑−1[𝑠, →))}𝑠∈𝑆  or 
{𝑀𝐴(𝜑−1(←, 𝑠])}𝑠∈𝑆. In the binary case, 𝑀𝐼(𝜑−1[1, →)) =
𝑀𝐼(𝜑−1(1))  and 𝑀𝐴(𝜑−1(← ,0]) = 𝑀𝐴(𝜑−1(0))  are 

respectively the sets of the minimal path and cut vectors.  

 

Definition 3. (Modular decomposition) A partition 

{𝐴1, ⋯ , 𝐴𝑚} of 𝐶 is called a modular decomposition of an 

increasing system (Ω𝐶 , 𝑆, 𝜑) , when there exist increasing 

systems (Ω𝐴𝑗
, 𝑆𝑗 , 𝜒𝑗) (𝑗 = 1, ⋯ , 𝑚)  and (∏ 𝑆𝑗

𝑚
𝑗=1 , 𝑆, 𝜓) 

such that  

∀𝒙 ∈ Ω𝐶 , 𝜑(𝒙) = 𝜓(𝜒1(𝒙𝐴1), ⋯ , 𝜒𝑚(𝒙𝐴𝑚)). 



 

4. BINARY STATE CASE 
 

In this section we present the stochastic formulation of 

Birnbaum and criticality importance measures of a binary state 

system (Ω𝐶 , 𝑆, 𝜑). 𝑃 is a probability on Ω𝐶 .  

 

4.1. Birnbaum and Criticality Importance Measures 
 

We set 

 
𝐶𝜑(𝑖) = {

𝑑𝑒𝑓
 𝒙 ∈ ∏ Ω𝑗

𝑗∈𝐶{𝑖}

 | 𝜑(1𝑖 , 𝒙)

= 1, 𝜑(0𝑖 , 𝒙) = 0 } 

(2) 

A state vector of 𝐶𝜑(𝑖) is called a critical state vector of the 

component 𝑖 and means a circumstance where the state of the 

component 𝑖 is critical to the system.  

 

Definition 4. (Birnbaum importance measure) The Birnbaum 

importance measure of the component 𝑖 ∈ 𝐶 is defined to be 

the probability 𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖)).   

 

Critical state vectors are determined by the minimal 

path vectors in 𝑀𝐼(𝜑−1(1)) and the minimal cut vectors in 

𝑀𝐴(𝜑−1(0)).  

 

Theorem 2. (Determination of 𝐶𝜑(𝑖)) For a state vector 𝒙 ∈

Ω𝐶 , (⋅𝑖 , 𝒙) is a critical state vector of the component 𝑖 if and 

only if  

 
∃𝒑 ∈ 𝑀𝐼(𝜑−1(1)), ∃𝒌 ∈ 𝑀𝐴(𝜑−1(0)),

(⋅𝑖 , 𝒌) ≧ (⋅𝑖 , 𝒙) ≧ (⋅𝑖 , 𝒑). 
(3) 

For these 𝒑  and 𝒌 , 𝑝𝑖 = 1  and 𝑘𝑖 = 0  hold by the 

increasing property of 𝜑. 

 

Theorem 2, which is equivalent to Theorem 1 of 

Meng(1966), gives us a convenient form for us to give an 

algorithm of determining our extended critical state vectors in 

the multi-state case. By this theorem, we have a determination 

procedure of 𝐶𝜑(𝑖).  

 

𝐒𝐓𝐄𝐏 𝟏.  𝑀𝐼 × 𝑀𝐴𝜑(𝑖) = {
𝑑𝑒𝑓

 (𝒑𝐶∖{𝑖}, 𝒌𝐶∖{𝑖}) | (⋅𝑖, 𝒌)

≧ (⋅𝑖 , 𝒑), 𝒑 ∈ 𝑀𝐼(𝜑−1(1)), 𝒌

∈ 𝑀𝐴(𝜑−1(0)) }. 
𝐒𝐓𝐄𝐏 𝟐.  For (𝒑, 𝒌) ∈ 𝑀𝐼 × 𝑀𝐴𝜑(𝑖), 

𝑋𝜑(𝑖, 𝒑, 𝒌) = {
𝑑𝑒𝑓

 (⋅𝑖 , 𝒙) | (⋅𝑖 , 𝒌) ≧ (⋅𝑖 , 𝒙) ≧ (⋅𝑖 , 𝒑) }. 

𝐒𝐓𝐄𝐏 𝟑.   𝐶𝜑(𝑖) = ⋃ 𝑋𝜑

(𝒑,𝒌)∈𝑀𝐼×𝑀𝐴𝜑(𝑖)

(𝑖, 𝒑, 𝒌). 

 

By the total probability law, the Birnbaum importance 

measure of the component 𝑖 is decomposed as follows.  
𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖)) = 𝑃({1𝑖} × 𝐶𝜑(𝑖) | 𝜑 = 1 ) ⋅ 𝑃(𝜑 = 1) 

 +𝑃({0𝑖} × 𝐶𝜑(𝑖) | 𝜑 = 0) ⋅ 𝑃(𝜑 = 0), (4) 

where {1𝑖} × 𝐶𝜑(𝑖) = { (1𝑖 , 𝑥) ∶  𝑥 ∈ 𝐶𝜑(𝑖) }.  Taking 

separately each term in the right hand side of (4), we have the 

following definition of two kinds of criticality importance 

measures.  

 

Definition 5. (Criticality importance measure) The criticality 

importance measures of the component 𝑖 are defined in the 

two ways.  

 𝑃({1𝑖} × 𝐶𝜑(𝑖) | 𝜑 = 1), (5) 

 𝑃({0𝑖} × 𝐶𝜑(𝑖) | 𝜑 = 0). (6) 

 

When the components are stochastically independent,  

 

𝑃({1𝑖} × 𝐶𝜑(𝑖) | 𝜑 = 1)

= 𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖))

⋅
𝑃𝑖(1)

𝑃(𝜑 = 1)
, 

(7) 

 

𝑃({0𝑖} × 𝐶𝜑(𝑖) | 𝜑 = 0)

= 𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖))

⋅
𝑃𝑖(0)

𝑃(𝜑 = 0)
. 

(8) 

 

4.2. Modular Decomposition and Importance 

Measures 
 

For a binary state system (Ω𝐶 , 𝑆, 𝜑) , a modular 

decomposition {𝐴1, ⋯ , 𝐴𝑚}  is supposed to be given. 

Furthermore, a probability 𝑃  on Ω𝐶  is assumed to be the 

product probability of 𝑃𝐴𝑗 , 𝑗 = 1, ⋯ , 𝑚 . 𝜒𝑗 ∘ 𝑃𝐴𝑗  is the 

image probability of 𝑃𝐴𝑗  on 𝑆𝑗  by 𝜒𝑗  (𝑗 = 1, ⋯ , 𝑚) , 

⊗𝑗=1
𝑚 𝜒𝑗 ∘ 𝑃𝐴𝑗  is the product probability on ∏ 𝑆𝑗

𝑚
𝑗=1 , and 

𝜓 ∘ (⊗𝑗=1
𝑚 𝜒𝑗 ∘ 𝑃𝐴𝑗) is the image probability of ⊗𝑗=1

𝑚 𝜒𝑗 ∘

𝑃𝐴𝑗  on S by 𝜓. 𝜑 ∘ 𝑃 = 𝜓 ∘ (⊗𝑗=1
𝑚 𝜒𝑗 ∘ 𝑃𝐴𝑗) clearly holds. 

Importance measures of the modules 𝐴𝑗 , 𝑗 = 1,⋅⋅⋅, 𝑚 in the 

system 𝜓 is defined by the probability ⊗𝑗=1
𝑚 𝜒𝑗 ∘ 𝑃𝐴𝑗 .  We 

use a symbol 𝑗𝑖  denoting the index number of the module 

which contains the component 𝑖. 
We suppose module 1 contains the component 1 without 

loss of generality.  

 

Theorem 3. For the Birnbaum and criticality importance 

measures, we have the following chain rule via a modular 

decomposition.  

 
𝑃𝐶∖{1}(𝐶𝜑(1)) = 𝑃𝐴1∖{1}(𝐶𝜒1

(1)) ×⊗𝑗=2
𝑚 𝜒𝑗

∘ 𝑃𝐴𝑗(𝐶𝜓(1)), 
(9) 

𝑃({11} × 𝐶𝜑(1) | 𝜑 = 1) =
𝑃𝐴1({11} × 𝐶𝜒1(1))

𝑃𝐴1(𝜒1 = 1)
 

 ⋅
⊗𝑗=1

𝑚 𝜒𝑗 ∘ 𝑃𝐴𝑗({11} × 𝐶𝜓(1))

⊗𝑗=1
𝑚 𝜒𝑗 ∘ 𝑃𝐴𝑗(𝜓 = 1)

, (10) 

𝑃({01} × 𝐶𝜑(1) | 𝜑 = 0) =
𝑃𝐴1({01} × 𝐶𝜒1

(1))

𝑃𝐴1(𝜒1 = 0)
 



 ⋅
⊗𝑗=1

𝑚 𝜒𝑗 ∘ 𝑃𝐴𝑗({01} × 𝐶𝜓(1))

⊗𝑗=1
𝑚 𝜒𝑗 ∘ 𝑃𝐴𝑗(𝜓 = 0)

. (11) 

 

The equality (9) tells us that the next equality holds.   

 

⋅ [ the Birnbaum importance measure of the component 1 in 

the system 𝜑 ]   

= [ the Birnbaum importance measure of the component 1 in 

the system 𝜒1 ] 

× [ the Birnbaum importance measure of the module 1 in the 

system 𝜓 ]   

 

From (10) and (11) we have the similar equalities about 

the criticality importance measures.  

 

⋅ [ the criticality importance measure of the component 1 in 

the system 𝜑 ]  

= [ the criticality importance measure of the component 1 in 

the system 𝜒1 ] 

× [ the criticality importance measure of the module 1 in the 

system 𝜓 ]  

 

4.3. Importance Measures of a Series-Parallel 

System 
 

In this section, we show a consistency of the magnitude 

relations among importance measures of the components of a 

series-system which is well observed in practical situations. 

See Figure 1. The system may be considered to have a modular 

decomposition {𝐴𝑖, 𝑖 = 1, ⋯ , 𝑚}, where  

𝐴𝑖 = {(𝑖, 1), ⋯ , (𝑖, 𝑛𝑖)}. 

Each module is a parallel system and the organising structure 

𝜓  is a series system. The components are assumed to be 

stochastically independent and doubly indexed.  

The Birnbaum and criticality importance measures of 

the component (1,1) are respectively given by the chain rule 

as follows.  

𝑃𝐶∖{(1,1)}(𝐶𝜑((1,1)))

= 𝑃𝐴1∖{(1,1)}{(⋅(1,1), 𝟎)} ×⊗𝑗=2
𝑚 𝜒𝑗

∘ 𝑃𝐴𝑗{(⋅1, 𝟏)}. 

𝑃({1(1,1)} × 𝐶𝜑((1,1)) | 𝜑 = 1) =
𝑃𝐴1{(1(1,1), 𝟎)}

𝑃𝐴1(𝜒1 = 1)
, 

𝑃({0(1,1)} × 𝐶𝜑((1,1)) | 𝜑 = 0) =
⊗𝑗=1

𝑚 𝜒𝑗 ∘ 𝑃𝐴𝑗{(01, 𝟏)}

⊗𝑗=1
𝑚 𝜒𝑗 ∘ 𝑃𝐴𝑗(𝜓 = 0)

. 

By the above equalities, the following two inequalities (i) and 

(ii) are equivalent with each other and also (iii) and (iv) are 

equivalent, which mean that for every series-parallel system, 

it does not matter which importance measure you use. This 

assertion is still true for a system which is hierarchically 

composed of series and parallel modules.  

 

(i) Birnbaum importance measure of the component (1,1)   

   ≦ Birnbaum importance measure of the component (2,1) 

 

(ii) criticality importance measure of the component (1,1)   

   ≦ criticality importance measure of the component (2,1) 

 

(iii) Birnbaum importance measure of the component (1,1)   

   ≦ Birnbaum importance measure of the component (1,2) 

 

(iv) criticality importance measure of the component (1,1)   

   ≦ criticality importance measure of the component (1,2) 

 

Figure 1: A series-parallel system composed of components 

doubly indexed as (i,j), where i is the number of the module 

and j is the number of the component in the module i. 

 

5. MULTI-STATE CASE 
 

For a multi-state system (Ω𝐶 , 𝑆, 𝜑) , we define some 

kinds of critical state vectors of a component 𝑖 ∈ 𝐶  which 

correspond to (2) for a binary state system. For 𝑘 ∈ Ω𝑖 and 

𝑠 ∈ 𝑆,  

 𝐶𝜑(𝑖, 𝑘; 𝑠) = {
𝑑𝑒𝑓

 (⋅𝑖, 𝒙) ∈ Ω𝐶∖{𝑖} | 𝜑(𝑘𝑖 , 𝒙) ≧ 𝑠 

and 𝜑((𝑘 − 1)𝑖 , 𝒙) ≦ 𝑠 − 1 }. 
(12) 

For states 𝑘, 𝑙 ∈ Ω𝑖, and 𝑠, 𝑡 ∈ 𝑆,  

 
𝐶𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡) = {

𝑑𝑒𝑓
 (⋅𝑖 , 𝒙) ∈ Ω𝐶∖{𝑖} | 𝜑(𝑘𝑖 , 𝒙)

= 𝑠,  

𝜑(𝑙𝑖 , 𝒙) = 𝑡 }. 

(13) 

Clearly the following equality holds.  

 𝐶𝜑(𝑖, 𝑘; 𝑠) = ⋃ 𝐶𝜑

𝑢≦𝑠−1,𝑠≦𝑣

(𝑖, 𝑘 − 1, 𝑘 ; 𝑢, 𝑣). (14) 

 

Theorem 4. (Determination of 𝐶𝜑(𝑖, 𝑘; 𝑠)) For the state 𝑘 

of the component 𝑖 and the state 𝑠 ∈ 𝑆, (⋅𝑖 , 𝒙) ∈ 𝐶𝜑(𝑖, 𝑘; 𝑠) 

holds if and only if  

∃(𝑘𝑖 , 𝒂) ∈ 𝑀𝐼(𝜑−1[𝑠, →)),  

∃((𝑘 − 1)𝑖 , 𝒃) ∈ 𝑀𝐴(𝜑−1(←, 𝑠 − 1]), 
(𝑘𝑖 , 𝑥) ≧ 𝒂, (𝑘 − 1)𝑖 , 𝑥) ≦ 𝒃. 

 

Theorem 4 shows us how the critical state vectors of 

𝐶𝜑(𝑖, 𝑘; 𝑠) may be determined by the minimal and maximal 

state vectors by which the system is uniquely determined. 

 

Basic Algorithm for Determining 𝐶𝜑(𝑖, 𝑘; 𝑠)  

𝐒𝐓𝐄𝐏 𝟏.  𝑀𝐼 × 𝑀𝐴𝜑(𝑖, 𝑘; 𝑠) = {
𝑑𝑒𝑓

 (𝒂, 𝒃); 𝒂𝐶∖{𝑖} ≦ 𝒃𝐶∖{𝑖}, 



𝑎𝑖 = 𝑘, 𝑏𝑖 = 𝑘 − 1, 𝒂 ∈ 𝑀𝐼(𝜑−1[𝑠, →)), 

𝒃 ∈ 𝑀𝐴(𝜑−1(←, 𝑠 − 1]) }, 
𝐒𝐓𝐄𝐏 𝟐.  For (𝒂, 𝒃) ∈ 𝑀𝐼 × 𝑀𝐴𝜑(𝑖, 𝑘; 𝑠), 

𝑋𝜑(𝑖, 𝑘; 𝑠; 𝒂, 𝒃) = {
𝑑𝑒𝑓

 𝒙 ∈ Ω𝐶∖{𝑖} | 𝒂𝐶∖{𝑖} ≦ 𝒙 ≦ 𝒃𝐶∖{𝑖} }, 

𝐒𝐓𝐄𝐏 𝟑.   𝐶𝜑(𝑖, 𝑘; 𝑠) = ⋃ 𝑋𝜑

(𝒂,𝒃)∈𝑀𝐼×𝑀𝐴𝜑(𝑖,𝑘;𝑠)

(𝑖, 𝑘; 𝑠; 𝒂, 𝒃). 

 

Theorem 5. (Determination of 𝐶𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡) ) Assuming 

𝑘 < 𝑙  and 𝑠 < 𝑡  without loss of generality, (⋅𝑖 , 𝒙) ∈
𝐶𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡) holds if and only if the following conditions 

hold.  

∃𝒂 ∈ 𝑀𝐼(𝜑−1(𝑠)), ∃𝒃 ∈ 𝑀𝐴(𝜑−1(𝑠)), 

 ∃𝒄 ∈ 𝑀𝐼(𝜑−1(𝑡)), ∃𝒅 ∈ 𝑀𝐴(𝜑−1(𝑡)), 

𝒂 ≦ 𝒃, 𝒄 ≦ 𝒅, 𝑎𝑖 ≦ 𝑘 ≦ 𝑏𝑖 < 𝑐𝑖 ≦ 𝑙 ≦ 𝑑𝑖 ,  

(⋅𝑖 , 𝒄) ≦ (⋅𝑖 , 𝒃), (⋅𝑖 , 𝒂) ≦ (⋅𝑖 , 𝒅), 
𝒂 ≦ (𝑘𝑖 , 𝒙) ≦ 𝒃, 𝒄 ≦ (𝑙𝑖 , 𝒙) ≦ 𝒅. 

 

Basic Algorithm for Determining 𝐶𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡)  

𝐒𝐓𝐄𝐏 𝟏.  𝑀𝐼 × 𝑀𝐴𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡) = {
𝑑𝑒𝑓

 (𝒂, 𝒃; 𝒄, 𝒅) |  

𝒂 ∈ 𝑀𝐼(𝜑−1(𝑠)), 𝒃 ∈ 𝑀𝐴(𝜑−1(𝑠)), 
𝒄 ∈ 𝑀𝐼(𝜑−1(𝑡)), 𝒅 ∈ 𝑀𝐴(𝜑−1(𝑡)), 
𝒂 ≦ 𝒃, 𝒄 ≦ 𝒅, 𝑎𝑖 ≦ 𝑘 ≦ 𝑏𝑖 < 𝑐𝑖 ≦ 𝑙 ≦ 𝑑𝑖 , 
(⋅𝑖, 𝒄) ≦ (⋅𝑖 , 𝒃), (⋅𝑖 , 𝒂) ≦ (⋅𝑖 , 𝒅) }. 
𝐒𝐓𝐄𝐏 𝟐.  For (𝒂, 𝒃; 𝒄, 𝒅) ∈ 𝑀𝐼 × 𝑀𝐴𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡) 

𝑋𝜑(𝒊, 𝒂, 𝒃; 𝒄, 𝒅) = {
𝑑𝑒𝑓

 𝑥 ∈ Ω𝐶∖{𝑖} | (⋅𝑖 , 𝒂) ≦ (⋅𝑖 , 𝒙) ≦ (⋅𝑖 , 𝒃), 

(⋅𝑖, 𝒄) ≦ (⋅𝑖 , 𝒙) ≦ (⋅𝑖 , 𝒅) }, 
𝐒𝐓𝐄𝐏 𝟑.  𝐶𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡)

= ⋃ 𝑋𝜑

(𝒂,𝒃;𝒄,𝒅)∈𝑀𝐼×𝑀𝐴𝜑(𝑖,𝑘,𝑙;𝑠,𝑡)

(𝑖, 𝑘, 𝑙; 𝑠, 𝑡). 

 

Example 1. (Critical state vectors of a restricted series system) 

Assuming the state spaces of the components and the system 

to be  

Ω𝑖 = 𝑆 = {0,1,2, ⋯ , 𝑁}, 𝑖 = 1, ⋯ , 𝑛, 
we examine the critical state vectors of a series system of 

which structure function is give as  

𝜑(𝑥1, ⋯ , 𝑥𝑛) = min
1≦𝑖≦𝑛

𝑥𝑖 . 

The minimal and maximal state vectors are given as  

𝑠 ∈ 𝑆,  𝑀𝐼𝜑(𝑠) = {(𝑠, ⋯ , 𝑠)}, 

𝑀𝐴𝜑(𝑠) = {(�̌�
𝑖

, 𝑵) | 𝑖 = 1,2, ⋯ , 𝑛 }, 

where (�̌�
𝑖

, 𝑵) = (𝑁, ⋯ , 𝑁, �̌�
𝑖

, 𝑁, ⋯ , 𝑁), a state vector of which 

i-th coordinate is s and others are N. Following the basic 

algorithm, we have  

 
𝐶𝜑(𝑖, 𝑠; 𝑠) = {𝒙 ∈ Ω𝐶∖{𝑖} | 𝑥𝑗 ≧ 𝑠,

𝑗 = 1, ⋯ , 𝑛, 𝑗 ≠ 𝑖 } 
(15) 

𝐶𝜑(𝑖, 𝑘; 𝑠) = 𝜙,  𝑘 ≠ 𝑠. 

The stricter critical state vectors of this series system may be 

given as follows. Assuming 𝑠 < 𝑡,  

 

𝐶𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡)

= {

{ 𝒙 ∈ Ω𝐶∖{𝑖} | 𝑥𝑗 ≧ 𝑡, 𝑗 = 1, ⋯ , 𝑛, 𝑗 ≠ 𝑖 },

                  𝑘 = 𝑠, 𝑙 = 𝑡
𝜙          otherwise

 (16) 

More general definition of a series and a parallel system 

may be found in Ohi (1983)(2013).   

 

5.1. Extension of Birnbaum Importance Measure 
 

Now assuming a probability 𝑃 to be endowed with Ω𝐶 , 

we extend the Birnbaum importance measure of Definition 2 

to the multi-state case.  

 

Definition 6. (Definition of Birnbaum importance measures) 

(i) For states 𝑘 ∈ Ω𝑖  and 𝑠 ∈ 𝑆 , 𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖, 𝑘; 𝑠))  is 

called the (𝑖, 𝑘; 𝑠)-Birnbaum importance measure.  

(ii) For two states 𝑘  and 𝑙  of Ω𝑖  such that 𝑘 < 𝑙  and a 

system’s state 𝑠  and 𝑡  such that 𝑠 < 𝑡 , 

𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡))  is called the (𝑖, 𝑘, 𝑙; 𝑠, 𝑡) -Birnbaum 

importance measure.  

 

(𝑖, 𝑘; 𝑠) -Birnbaum importance measure means the 

degree of critical contribution of the state 𝑘 of the component 

𝑖  to the system’s state 𝑠 . (𝑖, 𝑘; 𝑠) -Birnbaum importance 

measure is shown in Natvig(2011) for the totally ordered state 

spaces having the same cardinal number. In this paper, the 

sameness of the cardinal numbers is not assumed.  

The chain rule of multiplication via a modular 

decomposition does not generally hold for (𝑖, 𝑘; 𝑠)-Birnbaum 

importance measure, but holds for (𝑖, 𝑘, 𝑙; 𝑠, 𝑡) -Birnbaum 

importance measure. Then, noticing  

 

𝑃𝐶∖{𝑖}(𝐶𝜑; 𝑠))

= ∑ 𝑃𝐶∖{𝑖}

𝑢≦𝑠−1,𝑠≦𝑣

(𝐶𝜑(𝑖, 𝑘 − 1, 𝑘; 𝑢, 𝑣)) (17) 

by (14), this strict importance measure can be used 

complementary for obtaining the (𝑖, 𝑘; 𝑠) -Birnbaum  

importance measure. 

 

Example 2. (Continuation of Example 1) For the series system, 

the (𝑖, 𝑘; 𝑠) -Birnbaum importance measure is given as 

follows.  

𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖, 𝑠; 𝑠)) = 𝑃𝐶∖{𝑖}{𝒙 ∈ Ω𝐶∖{𝑖} | 𝑥𝑗 ≧ 𝑠, 𝑗

= 1, ⋯ , 𝑛, 𝑗 ≠ 𝑖 } 

𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖, 𝑘; 𝑠)) = 0,  𝑘 ≠ 𝑠. 

s functioning.  

(𝑖, 𝑘, 𝑙; 𝑠, 𝑡) -Birnbaum importance measure is given as the 

following.  

𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖, 𝑠, 𝑡; 𝑠, 𝑡)) = 𝑃𝐶∖{𝑖}{ 𝒙 ∈ Ω𝐶∖{𝑖} | 𝑥𝑗 ≧ 𝑡, 𝑗

= 1, ⋯ , 𝑛, 𝑗 ≠ 𝑖 }, 
𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡)) = 0,  𝑘 ≠ 𝑠, or 𝑙 ≠ 𝑡. 

 

 



5.2. Chain Rule for Extended Birnbaum Importance 

Measure via Modular Decomposition 
 

We suppose (∏ Ω𝑗𝑗∈𝐴𝑖
, 𝑆𝑖 , 𝜒𝑖) (𝑖 = 1, ⋯ , 𝑚)  and 

(∏ 𝑆𝑖
𝑚
𝑖=1 , 𝑆, 𝜓) to be a modular decomposition of a system 

(∏ Ω𝑖𝑖∈𝐶 , 𝑆, 𝜑)  having a probability 𝑃  on Ω𝐶 . The 

probability 𝑃  is, furthermore, assumed to be the product 

probability of 𝑃𝐴𝑖  which is the restriction of 𝑃 to Ω𝐴𝑖
, 𝑖 =

1, ⋯ , 𝑛.  

We have the following relation among critical state 

vectors via the modular decomposition.  

𝐶𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡) = ⋃ 𝐶𝜒𝑗𝑖
𝑠𝑗𝑖

,𝑡𝑗𝑖
∈𝑆𝑗𝑖

,𝑠𝑗𝑖
<𝑡𝑗𝑖

(𝑖, 𝑘, 𝑙; 𝑠𝑗𝑖
, 𝑡𝑗𝑖

) 

 
× (𝜒1, ⋯ , 𝜒𝑗𝑖−1, 𝜒𝑗𝑖+1, ⋯ , 𝜒𝑛)−1(𝐶𝜓(𝑗𝑖 , 𝑠𝑗𝑖

, 𝑡𝑗𝑖
; 𝑠, 𝑡)), (18

) 

where 𝑗𝑖  is the index number of the module to which the 

component 𝑖 belongs. Taking the probability of the both side 

of (18), we have the next theorem.  

 

Theorem 6. For the Birnbaum importance measures of 

systems of a modular decomposition, we have the following 

multiplicative relation. 

𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖, 𝑘, 𝑙; 𝑠, 𝑡))

= ∑ 𝑃
𝐴𝑗𝑖

∖{𝑖}

𝑠𝑗𝑖
,𝑡𝑗𝑖

∈𝑆𝑗𝑖
,𝑠𝑗𝑖

<𝑡𝑗𝑖

(𝐶𝜒𝑗𝑖
(𝑖, 𝑘, 𝑙; 𝑠𝑗𝑖

, 𝑡𝑗𝑖
)) 

 
× (𝜒1, ⋯ , 𝜒𝑗𝑖−1, 𝜒𝑗𝑖+1, ⋯ , 𝜒𝑛)

∘ 𝑃
𝐶∖𝐴𝑗𝑖 (𝐶𝜓(𝑗𝑖 , 𝑠𝑗𝑖

, 𝑡𝑗𝑖
; 𝑠, 𝑡)). 

(19) 

 

The first and the second term in the summation of the 

right hand side of (19) are respectively the (𝑖, 𝑘, 𝑙; 𝑠𝑗𝑖
, 𝑡𝑗𝑖

)-

Birnbaum importance and (𝑗𝑖 , 𝑠𝑗𝑖
, 𝑡𝑗𝑖

; 𝑠, 𝑡) -Birnbaum 

importance.  

 

Example 3. (Series-parallel system) Using double index, we 

examine Birnbaum importance measures of a multi-state 

series-parallel system of which structure function is given as 

follows,  

 𝜑(𝒙1, ⋯ , 𝒙𝑚) = min
1≦𝑖≦𝑚

max
1≦𝑗≦𝑛𝑖

𝑥(𝑖,𝑗), (20) 

where we suppose Ω(𝑖,𝑗) = 𝑆 = {0,1, ⋯ , 𝑁}, 1 ≦ 𝑖 ≦ 𝑚, 1 ≦

𝑗 ≦ 𝑛𝑖 and 𝒙𝑖 denotes  

𝒙𝑖 = (𝑥(𝑖.1), ⋯ , 𝑥(𝑖,𝑛𝑖)), 𝑖 = 1, ⋯ , 𝑚. 

(20) means that the system is composed of 𝑚 modules each 

of which is a parallel system and the organising system is a 

series system, formally  

𝐴𝑖 = { (𝑖, 1), ⋯ , (𝑖, 𝑛𝑖) }, 𝑖 = 1, ⋯ , 𝑚, 

𝜒𝑖 : ∏ Ω𝑗

1≦𝑗≦𝑛𝑖

→ 𝑆𝑖 = {1, ⋯ , 𝑁}, 𝜒𝑖(𝒙𝑖) = max
1≦𝑗≦𝑛𝑖

𝑥(𝑖,𝑗) , 

𝜓: ∏ 𝑆𝑖 →

𝑚

𝑖=1

𝑆, 𝜓(𝑠1, ⋯ , 𝑠𝑚) = min
1≦𝑖≦𝑚

𝑠𝑖 . 

Then for the component (1,1), without loss of generality, we 

have Birnbaum importance measures as follows.  

𝐶𝜑((1,1), 𝑠, 𝑡; 𝑠, 𝑡)

= 𝐶𝜒1
((1,1), 𝑠, 𝑡; 𝑠, 𝑡)

× (𝜒2, ⋯ , 𝜒𝑚)−1(𝐶𝜓(1, 𝑠, 𝑡; 𝑠, 𝑡)), 

𝐶𝜑((1,1), 𝑠; 𝑠)

= 𝐶𝜒1
((1,1), 𝑠; 𝑠)

× (𝜒2, ⋯ , 𝜒𝑚)−1(𝐶𝜓(1, 𝑠; 𝑠)). 

𝑃𝐶∖{(1,1)}(𝐶𝜑((1,1), 𝑠, 𝑡; 𝑠, 𝑡))

= 𝑃𝐴1∖{(1,1)}(𝐶𝜒1
((1,1), 𝑠, 𝑡; 𝑠, 𝑡)) 

× (𝜒2, ⋯ , 𝜒𝑚)
∘ 𝑃𝐶∖𝐴1(𝐶𝜓(1, 𝑠, 𝑡; 𝑠, 𝑡)), 

𝑃𝐶∖{(1,1)}(𝐶𝜑((1,1), 𝑠; 𝑠)) = 𝑃𝐴1∖{(1,1)}(𝐶𝜒1
((1,1), 𝑠; 𝑠)) 

× (𝜒2, ⋯ , 𝜒𝑚)

∘ 𝑃𝐶∖𝐴1 (𝐶𝜓(1, 𝑠; 𝑠)), 

which denotes the Birnbaum importance measure of the 

system φ is the multiplication of the Birnbaum importance 

measures of the module and the organizing system. 

 

5.3. Overall Birnbaum Importance Measure 
 

We notice that the (𝑖, 𝑘; 𝑠) -Birnbaum importance 

measure 𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖, 𝑘; 𝑠))  depends on the component i’s 

state k. Taking the summation of this probability with respect 

to 𝑘 ∈ Ω𝑖, we may define an overall importance measure of 

the component i to some system‘s state greater than or equal 

to s. Noticing  

𝑠 ≠ 𝑡,  𝐶𝜑(𝑖, 𝑘; 𝑠) ∩ 𝐶𝜑(𝑖, 𝑘; 𝑡) = 𝜙, 

we have 

𝑃𝐶∖{𝑖}(⋃𝑘∈Ω𝑖
𝐶𝜑(𝑖, 𝑘; 𝑠)) = ∑𝑘∈Ω𝑖

 𝑃𝐶∖{𝑖}(𝐶𝜑(𝑖, 𝑘; 𝑠)). 

We call this importance measure to be (𝑖; 𝑠) -importance 

measure.  

For a binary state system, importance measure is defined 

for the good(operating) and bad(failure) states. For a multi-

state system, when we consider an overall importance measure 

of a component, we should also define good and bad states. 

For the totally ordered state space, good states are those which 

are greater than or equal to some state s and other states are 

bad. The threshold state s is determined from a practical point 

of view.  

We remain the precise examinations of this overall 

importance measure for future work. 
 

6. CONCLUSION 
 

In this paper, we have shown stochastic definitions of 

the Birnbaum and criticality importance measures of binary 

state systems. The definition of the former importance 

measure based on the critical state vector does not need an 

assumption of stochastic independence among components. 

Under the independence assumption, we may derive the 

Birnbaum and criticality importance measure by the 

differential calculation with respect to the reliability of a 



component. 

𝑃𝐶∖{𝑖} (𝐶𝜑(𝑖)) =
𝜕ℎ(𝒑)

𝜕𝑝𝑖

, 

𝑃({1𝑖} × 𝐶𝜑(𝑖)|𝜑 = 1) =
𝜕 log ℎ(𝒑)

𝜕 log 𝑝𝑖

, 

𝑃({0𝑖} × 𝐶𝜑(𝑖)|𝜑 = 0) =
𝜕 log ℎ(𝒒)

𝜕 log 𝑞𝑖

, 

𝒑 = (𝑝1, … , 𝑝𝑛), 𝒒 = (𝑞1, … , 𝑞𝑛), 𝑝𝑖 + 𝑞𝑖 = 1, 
where pi is the reliability of the component i. The stochastic 

definition presented in this paper is more general and easily 

extended to the multi-state case.  

In this paper, for the binary state systems, we have 

examined the relations between Birnbaum and criticality 

importance measures and shown the consistency of the 

magnitude relations of the importance measures for a series-

parallel system which is well observed in practical situations. 

This consistency means that Birnbaum and criticality 

importance measures have no difference with each other from 

the practical point of view. Furthermore, we have presented 

for the importance measures a chain rule of multiplication via 

a modular decomposition. The chain rule shows us that the 

importance measure of a system may be obtained by stacking 

up the importance measures of the module and the organizing 

system in a way of multiplication, which is thought to be 

convenient for designers. 

In this paper, following the discussion of the binary state 

systems, we extended the Birnbaum importance measure to 

the multi-state system, of which state spaces are totally 

ordered sets, but the cardinal numbers of them are not 

necessarily the same. The extension is based on the two kinds 

of critical state vectors, following which we have given three 

kinds of Birnbaum importance measures, strict, soft and 

overall ones. The latter two measures are derived from the 

strict one. For the strict one, a chain rule via a modular 

decomposition holds.  

We have not examined stochastically other importance 

measures as criticality importance measure, Fussell-Vesely’s 

importance measure, risk achievement and reduction worth, 

Barlow-Proschan’s importance measure in a multi-state 

context. Especially, the dynamics of components should be 

essentially incorporated into the definition of an importance 

measure. Some authors, Barlow, et al.(1974), Natvig(2011), 

have tried to propose notions of importance measures 

incorporated with time development of components. 

Examinations of these problems in general partially ordered 

state spaces are remained for future work. 
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