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Abstract. A robust decision support system (DSS) is developed for a tactical planning problem of a closed-loop 

repair and replenishment network under the presence of demand uncertainties. The DSS involves the 

formulation of an optimization model that is intended to take on a mid to long term planning perspective and 

covers decisions that cannot be easily changed or undone. These decisions have lasting and binding impact on 

organizational performance. For instance, these decisions include facility location planning, repair capacity 

determination, and inventory acquisition planning.  

The model aims to minimize capital expenditure (CAPEX) incurred with respect to these decisions. The 

problem is characterized by the need to satisfy uncertain network requirements that unfortunately lead to 

nonlinear relationships within the model. In this regard, a local search framework has also been developed as a 

solution approach for the optimization of the tactical planning model. Computational studies provide support for 

the effectiveness of the decision support system. It is shown that the use of the DSS significantly improves 

CAPEX performance across different problem instances. The solution is able to adapt to both favorable and 

unfavorable business scenarios.   
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1. INTRODUCTION 
 

It is well-acknowledged in decision theory that real world 

agents rarely optimize their decisions. Doing so implies a 

need for a perfect model of a system from which the future 

behavior of variables may be deduced (Sterman, 2000). 

However, this can never be the case since reality by no means 

produces the exact conditions as initially planned. Thus, 

arriving at an optimal decision is virtually impossible even 

when faced with simple problems. Senge (1990) mentions 

that the complexities involved in decision making render 

organizations to fail to perform optimally even if they try to. 

These complexities lead them to ignore important aspects of a 

situation and underestimate the consequences of their 

decisions. Simon (1959) postulates that the need to achieve 

real, rather than ideal, representations of systems has imbued 

an attitude of satisficing in decision makers. They are often 

led to choose the first available actions which ensure that 

certain desired targets will be achieved. For instance, he 

illustrates that if business behavior is to be viewed in terms of 

this approach, it is to be expected that the firm’s target would 

involve the attainment of a certain level of profit or holding a 

certain share of the market, as oppose to the maximization of 

profit. 

This research proposes a target-oriented approach that is 

inspired by the decision analytic criterion of Brown and Sim 

(2010) and Brown et al. (2012). This approach is to be applied 

to a closed loop repair and replenishment network, which 

involves tactical repair, replenishment and logistics planning 

decisions. These decisions are to be evaluated based on 

management goals such as the achievement of target 

investment returns or CAPEX performance. A challenging 

issue in these decisions involves the presence of uncertainty. 

For example, because of the long implementation lead times 

of design decisions such as infrastructure development, many 

important system parameters may not be accurately known or 

projected before implementation of the decision. Hence, 

planning without explicitly accounting for these uncertainties 

can yield inferior performance in reality. In addition, data 

used in the evaluation and analysis of these systems inevitably 

contain errors and approximations. Results or actions 



obtained from these would therefore be subjected to 

uncertainties in the real system as well. 

Ben-Tal and Nemirovski (1999) state that even a small 

degree of uncertainty can make the usual optimal solution 

completely meaningless. The reality of which creates the need 

to identify solutions that would be robust to the presence of 

uncertainty. Bertsimas and Sim (2004) equate this robustness 

to a solution’s immunity to data uncertainty. Such that even if 

the underlying information deviate from their nominal values, 

the solution would still be able to achieve the targets of the 

system across all planning stages. 

The motivation of this research is then based on 

addressing the research challenge of developing a target-

oriented optimization approach that leads to the generation of 

robust solutions. The target-oriented approach preserves 

computational tractability and also allows for ambiguity in 

uncertainty information. Moreover, this research aims to show 

how traditional modeling paradigms can benefit from the use 

of a target-oriented optimization approach for applications in 

decision problems. 

 

 

 

 

2. CLOSED-LOOP REPAIR AND 

REPLENISHMENT NETWORK 

 
The closed-loop repair and replenishment network is 

diagramed in Figure 1. The products (or specifically 

fabrication boards) move both downstream and upstream 

involving the following: replenishment, use, collection, 

controlled disposal, recovery, repair and redistribution. The 

downstream movement of products begins with the repair hub 

and ends at the customers. Meanwhile, upstream movement 

begins with the customers and ends back at the repair hub. 

“Good boards” coming from the repair hub are 

transferred to local stocking centers (LSC), which are then 

eventually distributed to the customers. After some time, 

these boards will fail and product recovery is triggered by the 

collection of defective boards, coming from customers. 

Boards that are returned to the LSCs are brought back to the 

repair hub where recovery options are performed. These 

boards are classified according to the appropriate recovery 

option they fall under. Their subsequent reintroduction to 

corresponding distribution channels depend upon the degree 

of recovery imposed on them. For instance, collected products 

may pass repair standards that would allow them to be 

included again to the world-wide pool. Meanwhile, controlled 

disposal occurs for collected boards that fail in any of the 

recovery options considered. 

 

Hub

LSC 1

Scrap

Defective 

Boards

Good 

boards

LSC 2

Good 

boards from 

purchase

Defective

Boards

Good 

boards from 

Internal 

repair

Vendor

Good 

boards

Defective

Boards

Good Boards

from vendor

Customer

Customer

Customer

Customer

Customer

Customer

 
Figure 1: closed-loop repair and replenishment network   



3. THEORETICAL FRAMEWORK 
 

 

As shown in Figure 2, the model covers tactical decisions 

such as facility location siting, repair capacity determination, 

repair site-local stocking center (LSC)-customer linkages, 

worldwide pool (WWP) and planned level (PL) determination 

for inventory acquisition decisions. This model is intended to 

take on a mid to long term planning perspective (one year or 

more). It also aims to minimize capital expenditure (CAPEX) 

on repair location, repair capacity, LSC siting, logistical costs 

of repair site and LSC operation, shipping costs related to 

repair site-LSC and LSC-customer assignments, inventory 

purchase costs and inventory disposal costs. The decision 

output of the model includes the size of the repair capacity 

and expansion for each part in the repair facilities, the amount 

of inventory that would be shipped between the repair sites, 

LSCs and customer regions, and the PL for each LSC. The 

model will also decide on the network structure for repair and 

replenishment. Hence, another set of decisions includes 

binary decisions describing whether candidate repair facilities 

and LSCs would be installed. Furthermore, linkages between 

repair sites, LSCs and customer regions would also be 

determined. The model is also capable of monitoring system 

variables such as the total turnaround time of a spare part and 

the WWP in the network. The WWP can be further broken 

down into the following: defective inventory, work-in-process 

(WIP) inventory, in-transit inventory and serviceable 

inventory. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. OPTIMIZATION MODEL 

 

The network could handle multiple types of boards for a 

given product. The required input parameters of the model 

then include the repair cycle time and repair throughput time 

for each part, the required on-time-delivery (OTD) level for 

each part, the respective lead times involved in shipping spare 

parts between the repair site, LSCs and customer regions.  

 

These also include cost parameters found in   logistics, 

investment and operating costs in the installation of repair 

sites and LSCs, purchase and disposal costs related to the 

inventory of each part. The respective notations used for these 

indices and parameters are shown in Table 1 and Table 2, 

respectively. Meanwhile, Table 3 identifies the system 

variables that are likewise considered in the model. These 

include the total turnaround time and the WWP in the 

network. 

Table 1: Indices 

Indices Definition 

𝑡 = 1, … , 𝑇 Time period 

𝑖 = 1, … , 𝐼 
Facilities with repair capabilities (Hub and Satellite 

Repair) 

𝑗 = 1, … , 𝐽 Local Stocking Centers (LSCs) 

𝑘 = 1, … , 𝐾 Customers 

𝑝 = 1, … , 𝑃 Parts 

 

 

 

 

Table 2: Model Parameters 

Parameters  Definition 

𝑟𝑝 Repair cycle time for part p 

𝑡ℎ𝑝 Repair throughput time for part p 

𝑑𝑘,𝑡,𝑝 Usage from customer region k in period $t$ for part p 

𝑙𝑖,𝑗
𝐴  In transit time between repair site i to LSC j 

𝑙𝑗,𝑘
𝐵  In transit time between LSC j to customer k 

𝑙𝑗,𝑖
𝐶  In transit time between LSC j to repair site i 

𝑙𝑘,𝑗
𝐷  

Return time of defective boards from customer k to 

LSC j 

𝐶𝑖,𝑗
𝑆  Shipping cost from repair site i to LSC j per unit of 

Figure 2: Theoretical framework of the optimization model 



Parameters  Definition 

inventory 

𝐶𝑗,𝑘
𝑆  

Shipping cost from LSC j to customer region k per 

unit of inventory 

𝐶𝑝
𝑑𝑐 Disposal cost per unit of inventory of part p 

𝐶𝑝
𝑝𝑐

 Purchase cost per unit of inventory of part p 

𝐶𝑖,𝑝
𝑣  

Variable cost attributed to repair capacity in repair 

site i for part p 

𝐶𝑗,𝑝
𝑣  Variable cost in LSC j 

𝐼𝑖
𝐴 Investment cost for facility i installation 

𝐼𝑗
𝐵 Investment cost for LSC j installation 

𝐼𝑖
𝐶  

Investment cost for repair capacity expansion in 

repair site  i 

𝑓𝑖
𝐴 Fixed cost for facility i installation 

𝑓𝑗
𝐵 Fixed cost for LSC j installation 

𝑓𝑖,𝑗
𝐶  Fixed cost for linkage i to j 

𝑓𝑗,𝑘
𝐷  Fixed cost for linkage j to k 

𝑓𝑖
𝐸  

Incremental fixed cost per unit of capacity increase in 

repair site  i 

𝑂𝑇𝐷𝑝 Required OTD level for part p 

 

Table 3: System Variables 

Variables Definition 

𝑢𝑖,𝑡,𝑝 
Repair capacity at repair site $i$ in period $t$ for part 

${p}$ 

𝑒𝑖,𝑡,𝑝 
Repair capacity expansion at repair site $i$ in period 

$t$ for part ${p}$ 

Variables Definition 

𝑠𝑖,𝑗,𝑡,𝑝
𝐴  

Defective inventory returned to facility $i$ by LSC 

$j$ in period $t$ for part $p$ 

𝑠𝑗,𝑘,𝑡,𝑝
𝐵  

Defective inventory returned to LSC $j$ by customer 

$k$ in period $t$ for part $p$ 

𝑔𝑖,𝑡,𝑝
𝐴  

1 if facility $i$ is installed in period $t$ for part $p$ 

0, otherwise 

𝑔𝑗,𝑡,𝑝
𝐵  

1 if LSC $j$ is installed in period $t$ for part $p$ 

0, otherwise 

𝑔𝑖,𝑗,𝑡,𝑝
𝐶  

1 if facility $i$ is assigned to LSC $j$ in period $t$ for 

part $p$ 

0, otherwise 

𝑔𝑗,𝑘,𝑡,𝑝
𝐷  

1 if LSC $j$ is assigned to customer $k$ in period 

$t$ for part $p$ 

0, otherwise 

𝑏𝑖,𝑡,𝑝 
1 if facility $i$ undergoes repair capacity expansion in 

period $t$ for part $p$ 

0, otherwise 

𝑏𝑎𝑖,𝑗,𝑡,𝑝 
Amount of backlogs from repair site $i$ to facility 

$j$ in period $t$ for part $p$ 

𝑊𝑊𝑃𝑡,𝑝 Worldwide pool in period $t$ for part $p 

𝑃𝐿𝑗,𝑡,𝑝 Planned level for LSC $j$ in period $t$ for part $p$ 

𝑊𝑗,𝑡,𝑝 
Allocation of inventory for LSC $j$ in period $t$ for 

part $p$ 

𝑊′𝑗,𝑡,𝑝 
Inventory to be purchased for LSC $j$ in period $t$ for 

part $p$ 

𝑊′′𝑗,𝑡,𝑝 
Inventory to be disposed for LSC $j$ in period $t$ for 

part $p$ 

𝑇𝑇𝑗,𝑘,𝑡,𝑝 
Turnaround time recorded at LSC $j$, originating from 

customer region $k$ in period $t$ for part $p$ 

 

 

Any feasible repair and replenishment plan must respect 

physical and logical requirements such as capacity and flow 

balance constraints. As stated in Figure 2, one of the 

considerations in creating the network involves the 

installation of repair facilities, LSCs and assignment of 

linkages. The aforementioned are defined in the following 

constraints 

 

∑ 𝑔𝑖,𝑗,𝑡,𝑝
𝐶

𝑗 ≤ 𝐽 ∑ 𝑔𝑖,𝑡′,𝑝
𝐴𝑡

𝑡′=1   ∀ 𝑖, 𝑡, 𝑝        (1) 

∑ 𝑔𝑗,𝑘,𝑡,𝑝
𝐷

𝑘 ≤ 𝐾 ∑ 𝑔𝑗,𝑡′,𝑝
𝐵𝑡

𝑡′=1   ∀ 𝑗, 𝑡, 𝑝        (2) 

∑ 𝑔𝑖,𝑗,𝑡,𝑝
𝐶

𝑖 = ∑ 𝑔𝑗,𝑡′
𝐵𝑡

𝑡′=1                    ∀ 𝑗, 𝑡, 𝑝        (3) 

∑ 𝑔𝑗,𝑘,𝑡,𝑝
𝐷 = 1𝑗   ∀ 𝑘, 𝑡, 𝑝                   (4) 

∑ 𝑔𝑖,𝑡,𝑝
𝐴 ≤ 1𝑡   ∀ 𝑖, 𝑝                   (5) 

∑ 𝑔𝑗,𝑡,𝑝
𝐵 ≤ 1𝑡   ∀ 𝑗, 𝑝      (6) 

 

Constraint (1) states that a linkage between a repair site and 

an LSC could only be assigned if that repair site has been 

installed. Similarly, (2) states that a linkage between an LSC 

and customer region could only be assigned if the LSC is 

designated to be active or operational. Constraint (3) requires 

that an active LSC must be assigned to a repair site while (4) 

ensures that a customer region is assigned to an LSC in each 

time period. Meanwhile, constraint (5) and (6) state that 

candidate repair sites and LSCs could only be respectively 

installed and activated once within the planning horizon. 

 

𝑢𝑖,𝑡,𝑝 ≤ 𝑀1𝑔𝑖,𝑡,𝑝
𝐴   ∀ 𝑖, 𝑡, 𝑝        (7) 

𝑒𝑖,𝑡,𝑝 ≤ 𝑀2 ∑ 𝑏𝑖,𝑡′,𝑝
𝑡
𝑡′=1   ∀ 𝑖, 𝑡, 𝑝        (8) 

𝑏𝑖,𝑡,𝑝 = ∑ 𝑔𝑖,𝑡′,𝑝
𝐴𝑡

𝑡′=1                    ∀ 𝑖, 𝑡, 𝑝        (9) 

 

Repair capacities in each site can be increased through 

expansion as shown in  (7) - (9). As in (7), an initial repair 

capacity could only be assigned to an installed repair site. The 

maximum initial repair capacity is denoted by 𝑀1. Constraint 

(8) and (9) state that expansion in the succeeding periods 

could only be done on an existing repair site, in which the size 

of the expansion is capped to a maximum as denoted by 𝑀2.  

The succeeding constraints describe the usage fulfillment 

requirements in the network. Constraint (10) ensures that the 



amount of spare parts returned from a customer region equals 

the usage rate coming from that region. This implies that once 

a part fails, customers will have to return that part to the LSC 

it is assigned to. Constraint (11) and (12) state that shipments 

from a customer region to an LSC and an LSC to a repair site 

could only happen if a linkage has been assigned between 

each leg. Both type of shipments are assigned a cap as in 𝑀3.  
Constraint (13) describes a flow balance requirement between 

repair sites and LSCs. Specifically, the amount of spare parts 

returned from a customer region to an LSC must equal the 

amount of boards to be returned from that LSC to the repair 

site.  

 

∑ 𝑠𝑗,𝑘,𝑡,𝑝
𝐵

𝑗 = 𝑑𝑘,𝑡,𝑝  ∀ 𝑘, 𝑡, 𝑝        (10) 

𝑠𝑗,𝑘,𝑡,𝑝
𝐵 ≤ 𝑀3𝑔𝑗,𝑘,𝑡,𝑝

𝐷   ∀ 𝑗, 𝑘, 𝑡, 𝑝        (11) 

𝑠𝑖,𝑗,𝑡,𝑝
𝐴 = 𝑀3𝑔𝑖,𝑗,𝑡

𝐶                    ∀ 𝑖, 𝑗, 𝑡, 𝑝        (12) 

∑ 𝑠𝑖,𝑗,𝑡,𝑝
𝐴

𝑖 = ∑ 𝑠𝑗,𝑘,𝑡,𝑝
𝐵

𝑘                   ∀ 𝑗, 𝑡        (13) 

 

Constraints (14) and (15) relate repair capacity requirement 

to usage. (14) states that repair capacity should be able to 

accommodate the amount of spare parts being shipped by the 

LSC to the repair site. This is subject to the standard repair 

cycle time assigned to each part and the allowable amount of 

backorder. The latter is defined by the assigned OTD level for 

each part. OTD is defined to be the ratio between the amount 

of backorder per part and the usage for each part. 

 

∑ (𝑢𝑖,𝑡′ + 𝑒𝑖,𝑡′)𝑡
𝑡′=1 ≥

∑ 𝑠𝑖,𝑗,𝑡,𝑝
𝐴

𝑗 −∑ 𝑏𝑎𝑖,𝑗,𝑡,𝑝𝑗

𝑟𝑝
  

∀ 𝑖, 𝑡, 𝑝        (14) 

∑ ∑ 𝑏𝑎𝑖,𝑗,𝑡,𝑝𝑗𝑖

∑ 𝑑𝑘,𝑡,𝑝𝑘
≤ (1 − 𝑂𝑇𝐷𝑝)  ∀ 𝑡, 𝑝        (15) 

 

In computing for the planned level, the lead time 

considered consists of the transit time between repair site and 

LSC. Given this, PL is defined as in the following: 

𝑃𝐿𝑗,𝑡,𝑝 = ∑ (∑ (𝑑̅𝑘,𝑡,𝑝𝑔𝑗,𝑘,𝑡,𝑝
𝐷

𝑘 )𝑙𝑖,𝑗
𝐴 + 𝑧𝑝 ∗ ∑ (𝑑𝑆

𝑘,𝑡,𝑝𝑔𝑗,𝑘,𝑡,𝑝
𝐷

𝑘 )√𝑙𝑖,𝑗
𝐴 )𝑖                  

∀ 𝑗, 𝑡, 𝑝 (16) 

 

where 𝑑̅𝑘,𝑡,𝑝  and 𝑑𝑆
𝑘,𝑡,𝑝  denote the mean and standard 

deviation of the usage from customer region k in period t for 

part p. 𝑧𝑝  denotes the z-values obtained from the normal 

distribution with respect to the required OTD level of each 

part. On the other hand, the turnaround time is composed of 

the transit times from customer region to LSC and LSC to 

repair site, repair wait time and throughput time and transit 

time from repair site to LSC. 

 

𝑇𝑇𝑗,𝑘,𝑡,𝑝 = ∑ ((𝑖 𝑙𝑖,𝑗
𝐴 + 𝑙𝑗,𝑖

𝐶 + 𝑊𝑇𝑖,𝑗,𝑡,𝑝)  𝑔𝑖,𝑗,𝑡,𝑝
𝐶 ) + (𝑙𝑗,𝑘

𝐵 + 𝑙𝑘,𝑗
𝐷 )𝑔𝑗,𝑘,𝑡,𝑝

𝐷 +

𝑇𝐻𝑝      ∀ 𝑗, 𝑘, 𝑡, 𝑝               (17) 

 

where, 𝑊𝑇𝑖,𝑗,𝑡,𝑝 denotes the repair wait time for boards to be 

shipped from site i to j in period t for part p. The allocation of 

boards to each LSC is given by (18) where the planned level 

is added to the product of the turnaround time and usage in 

customer region k, period t and part p.  Given that the 

allocation may change from one period to the next, there is an 

option to purchase additional inventory or dispose excess 

inventory as shown in (19). From this, the WWP is calculated 

as the sum of allocated boards from each LSC as in (20). The 

domain for the decision and state variables are then defined in 

(21) and (22).   

 

𝑊𝑗,𝑡,𝑝 = ∑ (𝑇𝑇𝑗,𝑘,𝑡,𝑝𝑑𝑘,𝑡,𝑝) + 𝑃𝐿𝑗,𝑡,𝑝𝑘   ∀ 𝑗, 𝑡, 𝑝        (18) 

𝑊𝑗,𝑡+1,𝑝−𝑊𝑗,𝑡,𝑝 = 𝑊′𝑗,𝑡−𝑙,𝑝−𝑊′′𝑗,𝑡,𝑝  ∀ 𝑗, 𝑡, 𝑝  (19) 

𝑊𝑊𝑃𝑡,𝑝 = ∑ 𝑊𝑗,𝑡,𝑝𝑘   ∀ 𝑖, 𝑗, 𝑡, 𝑝        (20) 

 𝑢𝑖,𝑡,𝑝, 𝑒𝑖,𝑡,𝑝, 𝑠𝑖,𝑗,𝑡,𝑝
𝐴 , 𝑠𝑗,𝑘,𝑡,𝑝

𝐵 , 𝑏𝑎𝑖,𝑗,𝑡,𝑝, 𝑊𝑊𝑃𝑡,𝑝, 𝑃𝐿𝑗,𝑡,𝑝 

𝑊′𝑗,𝑡,𝑝, 𝑊′′𝑗,𝑡,𝑝  ∈ ℤ+, 𝑇𝑇𝑗,𝑘,𝑡,𝑝 ∈ ℜ+  

(21) 

 𝑔𝑖,𝑡,𝑝
𝐴 , 𝑔𝑗,𝑡,𝑝

𝐵 , 𝑔𝑖,𝑗,𝑡,𝑝
𝐶 , 𝑔𝑗,𝑘,𝑡,𝑝

𝐷 , 𝑏𝑖,𝑡,𝑝   ∈ {0.1}  (22) 

 

Finally, the objective of minimizing the CAPEX is defined as 

follows: 

 

min 𝐶𝐴𝑃𝐸𝑋 = ∑ ∑ 𝐶̃𝑡,𝑝
𝑂

𝑝𝑡                                        (23) 

 

The CAPEX decisions involve both capital investments and 

operational cost considerations that result in cash outflows 

defined as in (24). 

 

𝐶̃𝑡,𝑝
𝑂 = ∑ 𝐼𝑖

𝐴𝑔𝑖,𝑡,𝑝
𝐴

𝑖 + ∑ 𝐼𝑗
𝐵𝑔𝑗,𝑡,𝑝

𝐵
𝑗 + ∑ 𝐼𝑖

𝐶𝑏𝑖,𝑡,𝑝 + ∑ ∑ 𝑐𝑖,𝑗
𝑠

𝑗𝑖𝑖 𝑠𝑖,𝑗,𝑡,𝑝 + ∑ ∑ 𝑐𝑗,𝑘
𝑠 𝑠𝑗,𝑘,𝑡,𝑝𝑘𝑗  + ∑ 𝑓𝑖

𝐴
𝑖 ∑ 𝑔𝑖,𝑡′

𝐴𝑡
𝑡′ + ∑ 𝑓𝑗

𝐵
𝑗 ∑ 𝑔𝑗,𝑡′

𝐵𝑡
𝑡′ + ∑ ∑ 𝑓𝑖,𝑗

𝐶 𝑔𝑖,𝑗,𝑡,𝑝
𝐶

𝑗𝑖  

                   Investment costs                                Logistics costs                                                   Fixed costs 

 + ∑ ∑ 𝑓𝑗,𝑘
𝐷 𝑔𝑗,𝑘,𝑡,𝑝

𝐷
𝑘𝑗  + ∑ 𝑐𝑗,𝑝

𝑣
𝑗 (∑ 𝑠𝑗,𝑘,𝑡,𝑝𝑘 ) + ∑ 𝑐𝑖,𝑝

𝑣
𝑖 (∑ 𝑠𝑖,𝑗,𝑡,𝑝𝑗 ) + ∑ (𝑐𝑝

𝑝𝑐
𝑊′

𝑗,𝑡,𝑝 + 𝑐𝑝
𝑑𝑐𝑊′′𝑗,𝑡,𝑝)𝑖   + ∑ 𝑓𝑖

𝐸
𝑖 (𝑢𝑖,𝑡,𝑝 + 𝑒𝑖,𝑡,𝑝)          ∀ 𝑡, 𝑝         (24) 

       Fixed costs                           Variable costs                     Purchase and disposal cost of boards    Repair costs 

 

 

 



5. TARGET-ORIENTED ROBUST 

OPTIMIZATION MODEL 
 

In this network, the demands of the respective boards are 

subject to uncertainty. This uncertainty affects the objective 

function and the demand constraints in the formulation. For 

the purpose of exposition, let us  summarize the decision 

variables as 𝒙, objective function as 𝐦𝐚𝐱 𝒄′𝒙, and constraints 

as: 𝐴𝒙 ≤ 𝒅. Once the uncertainties on demand are considered, 

the revised formulation is given by: 

 

max
𝒙≥𝟎

𝒄′𝒙 (25) 

𝐴𝒙 ≤ 𝒅̃ (26) 

 

where, 𝒅̃ denote the vector of uncertain demand. We attempt 

to integrate this uncertainty through the TORO methodology 

proposed by Ng and Sy (2014). TORO facilitates process 

synthesis through the achievement of targets derived under 

uncertainty. The primary objective is to identify appropriate 

settings for the decision variables so that system constraints 

are feasible for as large a range of uncertain parameters as 

possible. In line with this, the uncertain vector 𝒅̃ could then 

be defined as follows:  

 

𝒅̃ =  𝒅̅ − 𝒅 (27) 

 

where 𝒅̅  represents the nominal values of demand and the 

perturbations 𝒚 are such that 

 

𝐷𝜃 = {𝒅 ∈ ℜ𝑁| 0 ≤  𝑑𝑖 ≤  𝑑̂𝑖(𝜃), ∀ 𝑖 = 1, … , 𝑁}. (28) 

 

The largest perturbations would take on the values 𝑑𝑖 =

𝑑̂𝑖, for all 𝑖 = 1, … , 𝑁. This also assumes that under the most 

favorable case, 𝒅̃ would be at the maximum (𝒅 = 0). This 

follows since profit is directly proportional to the number of 

units sold in the system.  It can also be seen that these 

perturbations are parameterized by the robustness index, 𝜃 ∈
[0,1] . A higher value of 𝜃  implies a larger degree of 

perturbations for the demand. This has practical implications 

in describing the attitude of a decision maker. A more 

uncertainty averse attitude would prefer a higher 𝜃, while a 

risk seeking attitude would lean towards a lower 𝜃. 
TORO hinges on the integration of the robust 

optimization framework and target-oriented decision making. 

As mentioned, we want to ensure that process synthesis 

remains feasible for as large a range of uncertain parameters 

as possible. Meanwhile, target-oriented decision making is 

reflected in the model by transforming the original objective 

function into a constraint through its assignment as a system 

target. Using this perspective primarily allows us to solve our 

uncertain problem in an efficient and effective manner, which 

would be discussed below. 

 

The succeeding model reflects the modification to the 

original uncertain model such that the objective function now 

maximizes the robustness index subject to achieving the profit 

target ( 𝜏 ). This is in conjunction to the other functional 

constraints of the system such as the set of demand 

constraints defined earlier.  

 

max
𝜽𝝐[𝟎,𝟏]

𝜃                            (29) 

𝒄′𝒙 ≥ 𝜏                               (30) 

𝐴𝒙 ≤ 𝒅̃              ∀ 𝒅̃ ∈  𝐷𝜃  (31) 

𝒙 ≥ 0                                (32) 

 

As discussed by Ng and Sy (2014), the robust model as it 

is formulated above would require evaluating an infinitely 

large number of constraints. This is because the uncertain 

constraints would lead us to create individual constraints for 

each possible realization of the uncertain demand. Hence, 

there is a need to convert this into an equivalent formulation, 

which would be amenable to solve using traditional linear 

programming techniques. Using the property of duality, an 

equivalent formulation is obtained below:  

 

max
𝜽𝝐[𝟎,𝟏]

𝜃  (33) 

𝒄′𝒙 ≥ 𝜏   (34) 

          𝐴𝒙 ≤ (𝒅̅ − 𝜃𝒅̂𝒛) (35) 

𝒛 ≥ 𝟏 (36) 

𝒙, 𝒛 ≥ 0   (37) 

 

where 𝒛 is a vector of the dual variables obtained during the 

translation of the constraints. We refer the readers to for a 

more thorough discussion on the translation to the robust 

model. 

Furthermore, we see that 𝐷𝜃′  ⊆  𝐷𝜃  whenever 𝜃 ≥ 𝜃′. If 

a process synthesis is feasible for an uncertainty set defined 

by 𝜃, then it will be feasible for all perturbations that would 

fall within this range. In addition, given a fixed value of 𝜃, the 

model is linear with respect to the decision variables. The 

model could thus be solved for the maximum robustness 

index by performing a line search on 𝜃 ∈ [0,1]. We could 

utilize well-known search algorithms like the bisection or 

golden search methods in this regard. The following case 

study demonstrates how the bisection search could be used in 

identifying the best value of 𝜃  that would satisfy a profit 

target set for the system. 

 



6. COMPUTATIONAL STUDIES 
 

In this section, we present some computational studies on 

the spare parts CLSC. The objective of the computational 

studies is to be able to compare the performance of TORO 

models under different robustness levels with respect to the 

total supply chain costs. The computational studies are 

facilitated through a hypothetical case study of a spare part 

CLSC. The CLSC is for a single product that contains four 

types of spare parts. Specifically, four different spare parts 

were considered in the computational studies. There is also 

one existing repair hub with the option of opening an 

additional 10 repair satellites. There are also nine candidate 

LSCs that could be assigned to customer regions and 10 

customer regions that need to be served by the network. As 

mentioned, the planning horizon is set at four quarters, which 

implies that four quarterly usage quantities have also been 

identified to serve as spare parts demand from customers.  

Figure 3 shows the decision support framework developed 

for the problem. This presents how the model is solved and 

deployed. Microsoft Excel is initially used for encoding the 

input parameters of the model. These parameters are then fed 

into MATLAB, wherein the optimization is solved through 

the CPLEX solver engine versions 12.6.1. After which, the 

results of the model are again written into the Excel solver in 

a spreadsheet format. The solution time of the model is 

recorded to be 31.6 seconds using a Macbook Pro 3 GHz Intel 

Core i7, 8 GB 1600 MHz DDR3. 

 

 
Figure 3. Deployment of optimization model 

In the succeeding computational experiments, we 

considered five cost budget levels. We obtained a 

corresponding design solution for each of these targets 

through a bisection search on 𝜃 to identify the best robustness 

index for each profit target. Out-of-sample testing has also 

been performed using 1000 realizations of the usage under a 

uniform distribution. This was done in order to gauge the 

performance of each design solution under different scenarios. 

Table 4 presents the performance of the TORO model in 

terms of expected total cost and the corresponding breakdown 

of these costs. 

In the computational experiments, one could observe that 

the expected cost decreases until the robustness index of 0.65 

and then subsequently increases thereafter. These 

observations imply that too conservative or too risky cost 

budgets would not necessarily equate to the bestcost 

performance. One might actually be better off with 

considering a mid-range target, rather than be too extreme in 

setting a cost budget for the system.  

A robustness level of 0.0 is equivalent to stating that one 

would not consider any degree of uncertainty. As a result, the 

corresponding design solution performed worse than the other 

design solutions. However, it should be noted that for this 

particular case study, the aforementioned led to a better set of 

results than the design solution under a robustness level of 

1.00. Hence, it should give the decision maker an inkling that 

he would be better off to be more risky in this case. This 

could be attributed to the required investment costs associated 

with being too conservative. Because one would want to 

service all of the defective parts flowing back into the system, 

he would be led to purchase more equipment or new 

inventory. This therefore leads to incurring additional costs 

for the supply chain.  

 

 

 

 

 



 

Table 4 Results  (‘000) 

  1.00 0.85 0.65 0.45 0.00 

Total Cost  $11,791  $11,622  $10,895  $11,036  $11,206 

Repair Facility Cost  $4,678  $4,678  $4,678  $4,678  $4,678 

Operations (Variable + Fixed)  $4,247  $4,247  $4,247  $4,247  $4,247 

Shipping (Hub to LSC)  $430  $430  $430  $430   $430 

LSC  $827  $827  $827  $827   $827 

Operations (Variable + Fixed)  $723  $723  $723  $723   $723  

Shipping (LSC to Customer)  $104  $104  $104  $104   $104  

Inventory Cost  $6,285  $6,116  $5,389  $5,530  $5,700 

 

 

7. CONCLUSIONS AND RECOMMENDATIONS 
 

This work develops a decision support model for spare parts 

CLSC. The model helps facilitate mid to long term planning 

decisions that cover the areas of investment, customer 

assignments, and inventory. It is able to consider different 

areas of a CLSC, which is necessary when a strategic 

perspective is desired. The computational studies demonstrate 

that the model has the ability to evaluate different business 

scenarios. This in turn allows a decision maker to gain 

managerial insights and develop policies with respect to the 

aforementioned scenarios.  
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