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Abstract. Mass and radial deformation are of great importance for high pressure turbine disc (HPTD), but 

computational cost of CAE (computer aided engineering) is too high to optimize these mutually restricted 

objectives. A virtual sample based method is proposed to speed the optimization of HPTD: noised based 

virtual samples are implemented to enlarge the training set, a cost-effective back propagation neural networks 

(BPNN) is trained whose hidden layer is set according to noise intensity and size of training set; this BPNN is 

used as fitness function of genetic algorithm for optimization whose initial population is the combination of 

different sample sets. Experiment shows that this data-driven framework decreases the engineering difficulty 

of MOO (multi-objective optimization), and it has high popularization value to optimization of other complex 

products. 
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1 .INTRODUCTION 
In the development of modern aero engine, the most 

expensive component is high-pressure turbine because of the 

harsh working environment (Joly et al.2013). Mass of a 

HPTD maybe ten times of that of a low pressure turbine disc 

and this mass determines the efficiency, stability, service life 

and performance of the engine (Jahed et al. 2005), much 

work has been done on mass reduction of HPTD. The disc 

expands in presence of higher temperature and contracts in 

presence of lower temperature; the centrifugal force is 

yielded by a high rotational speed. The radial deformation of 

the disc is so influenced by these variables creating the 

problem of blade-tip clearance (Hailia et al. 1982): Tighter 

clearance reduces air leakage over blade tips, but over-tighter 

clearance causes rubbing between blades and shroud. 

Proper blade-tip clearance results in economic and 

environmental benefits to the public at large, most 

commercial aircraft engines take active thermal control for 

this tip clearance (Decastro et al. 2004). If deformation of 

disc is taken into account at design stage, difficulty of active 

clearance control will be reduced in flight, but it is difficult to 

design a disc with minimum mass and radial deformation 

because there is no optimal solution for both sides. 

FEM is a widely used technique for modeling complex 

systems in computational engineering domain. However, 

analyzing of complex systems using FEM involves the 

application of time consuming methods of numerical 

simulation. Surrogate-assisted evolutionary computation is a 

good choice for this time-consuming problem (Jin 

2011).Neural network has stronger ability of universal 

approximation than other surrogates, and many engineering 

use FEM-based NN as fitness function for MOO problems. 

Nagendra et al. (2005) developed a MDO system for turbine 

disc with the integration of NN and FEM. Li and Water et al. 

(2015) developed a design environment which helped 

engineers to automatically model, simulate and optimize 

transformer design using ANN and FEM. Bakhtiari and 

Karimi et al. (2016) used ANN to model twist extrusion 

process based on results of FEM, and optimization was 

carried out by a combination of NN and multi-objective meta-

heuristic optimization algorithms. But computational load 

may still be a barrier to generate enough samples to train NN 

for complex product. With the inspiration of “virtual samples” 
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(Niyogi et al. 1998) and “The addition of noise to the input 

data of a neural networks during training can lead to 

significant improvement in generalization performance” 

(Bishop 1995), noise based virtual samples technologies 

could be used to enlarge sample size for surrogate model. 

However, traditional methods can’t be directly applied on 

DOE samples because they are based on distribution 

information of incomplete data (Li et al.2015).  

The rest of paper is organized as follows: Section 2 

briefly describes the HPTD design details and main factors 

are selected for optimization; an artificial neural network 

(ANN) with high cost-performance is trained in Section 3; 

NSGA-2 algorithm with initial generation design are 

formulated in Section 4, And in section 5 certain turbine disc 

is optimized by the combination of ANN and NSGA-2. 

Finally, conclusions and future work will be summarized in 

Section 6. 

 

2. SENSITIVITY ANALYSIS FOR HPTD 
DESIGN 

 

As can be seen from Figure.1a, HPTD is a product 

with complex structure, and it is difficult to make a fully 

analysis because of its complicated working conditions. 

With considering the features of axial symmetry, 2D FEM 

could be used to reduce the cost of CAE. 

 

2.1 CAE MODELING OF HPTD 

 

Turbine disc consists of body, mortises and flanges. 

Body consists of rim, hub and web plate that are connected 

by different kinds of profiles; blades are fitted onto disc by 

mortises; flanges connect disc with other components. 

Information of mortises is fused into rim to make an 

equivalent “body-flange” model for 2D-FEM. 

Figure.1b~c describe geometric details of certain HPTD, 

body parameters are rim radius R1, thickness W1 and height 

H1, shaft radius R2, hub thickness W2 and height H2, web 

plate’s outer diameter R3 and inner diameter R4, outer 

thickness W3 and inner thickness W4; flange parameters are 

location (H3,W5,H5,W7), length (H4,H6-H5), width 

(W6,W8) and chamfer (R5,R6). 

              

(a) A geometry model of HPTD      (b) Body parameters                (c) Flange parameters 

Figure 1: geometry model based on “body-flange” structure 

 

  Figure 2: Changes in tip clearance during a notional mission profile 

During a notional mission profile, as shown in Figure 2, 

changing engine operating conditions result in great variation 

of blade-tip clearance, “pinch points” are created for large-

magnitude transient events such as take-off and re-burst 



 

 

(Decastro et al. 2004), and severe rubs will be caused 

between blades and shroud and it is dangerous for flight. 

Harsh working environments result in large radial 

deformation of disc, which is several times of blades 

deformation (Kypuros and Melcher 2003) and it is of 

paramount importance to these rubs. 

Key loads on disc are: 1) High temperature/ pressure of 

mainstream flow; 2) Heat conduction between disc and 

blades; 3) Cooling effect by air along the borders; 4) Pulling 

force by rotating blades; 5) Centrifugal force 

generated by the rotating disc. To reduce the difficulty of 

optimization, other loads such as gravitational, gyroscopic 

and aero-dynamic loads are neglected. 4 types of BCs used 

are listed as follows: 

1） Pressure: this is an equivalent load on rim by 

mainstream flow and pulling force by rotating blades, 

it is: 

𝑃̃ = 𝑃𝑔𝑎𝑠 − 𝑛𝑏 ∗
𝑚𝑏𝑅𝑏𝜔2

𝐿 ∗ 2𝜋 ∗ 𝑟
             (1) 

Where 𝑃𝑔𝑎𝑠  is pressure of mainstream flow,  𝑛𝑏  is 

number of blades, 𝑚𝑏 is mass of a blade, 𝑅𝑏 is distance 

from blade centroid to disc axis, r is rim radius, 𝜔 is angular 

speed of rotor, 𝐿 is rim thickness. 

2） Body forces: Centrifugal force and gravity are applied 

to the disc. 

3） Heat transfer with mainstream flow, could be written 

as: 

      −𝑘
𝜕𝑇

𝜕𝑛
|

𝜕∅
= 𝛼ℎ(𝑇

− 𝑇𝑓)                        (2) 

 

Figure: 3 Approximation BC of cooling air 

Where k is thermal conductivity of disc, T is 

temperature of rim, 𝑇𝑓  is temperature of mainstream flow, ℎ 

is heat transfer coefficient and 𝛼 is an experiential correction 

factor for heat from blades. 

4） Convection with cooling air: Hot disc is cooled by air 

from compressor. Figure 3 gives an approximation for 

this fluid-thermal interaction, For boundary edge 

labeled by node 0 and 1, corresponding numerical 

equation is: 

𝑚𝑓 ∗ 𝐶 ∗ (𝑇𝑓1 − 𝑇𝑓0) = ℎ ∗ 𝐴 ∗ (𝑇𝑓 − 𝑇𝑤)  (3) 

Where 𝑇𝑓 = 0.5 ∗ (𝑇𝑓1 + 𝑇𝑓0) , 𝑇𝑤 = 0.5 ∗ (𝑇𝑤1 +

𝑇𝑤0) ,  𝑇𝑤0  and  𝑇𝑤1  are temperatures of 2 nodes, 𝑇𝑓0 

and  𝑇𝑓1  are temperatures of adjacent flow nodes, 𝐴  is 

length of edge, 𝑚𝑓  is mass of this air segment whose 

specific heat is 𝐶. 

 

2. CONTRIBUTION RATIO BASED MAIN 
FACTORS SELECTION 

 

Rough analysis shows that mass of web plate is manly 

decided by W3, W4, R3 and R4; mass of hub is decided by 

W2 and H2. Radial deformation is influenced by cooling and 

rotating factors, height of right flange (H6-H5) affects the 

cooling effect of right side, to the left flange, cooling effect is 

decided by H4, flanges connect disc with other components 

and they influence the radial deformation too. So 

(H1,H2,H4,H6,W2,W3,W4,W6,R3,R4) are set as factors of 

DOE whose responses are Mass and radial deformation. To 

simplify the computation, both flanges are set as same width 

(W6=W8), (W1,W5,W7,H3,H5,R1,R2,R5,R6) are set as 

fixed values; span and levels of each factor could be chosen 

with historical knowledge, Finally a Taguchi DOE with M 

samples is generated and main factors are selected as follows: 

Firstly, each response is normalized by Eq. (4): 

𝑏𝑖𝑗
′ =

𝑏𝑖𝑗 − min
0≤𝑖≤𝑀

𝑏𝑖𝑗

max
0≤𝑖≤𝑀

𝑏𝑖𝑗 − min
0≤𝑖≤𝑀

𝑏𝑖𝑗

                 (4) 

Where  𝑏𝑖𝑗  is j-th response of i-th sample and entropy 

of j-th response is: 

𝑒𝑗 = −𝑞 ∑ 𝑝𝑖𝑗 ln(𝑝𝑖𝑗);

𝑀

𝑖=1

    

𝑝𝑖𝑗 =
𝑏𝑖𝑗

′

∑ 𝑏𝑖𝑗
′𝑀

𝑖=1

; 𝑞 =
1

ln 𝑀
 , 𝑗 = 1,2               (5) 

Weight of each response is: 𝑤𝑗 =
𝛼𝑗

∑ 𝛼𝑗
2
𝑗=1

    (6) 

Where      𝛼𝑗 =
1−𝑒𝑗

2−∑ 𝑒𝑖
2
𝑖=1

 , 𝑗 = 1,2 

Secondly, range analysis is processed with the 

following steps: 
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1） Range of i-th factor on j-th response, denoted as 𝑅𝑖𝑗, 

is formulated as: 

𝑅𝑖𝑗 = 𝑀𝑎𝑥(𝐾(1,𝑖),𝑗 … 𝐾(𝑘,𝑖),𝑗) − 𝑀𝑖𝑛(𝐾(1,𝑖),𝑗 … 𝐾(𝑘,𝑖),𝑗)   (7) 

Where k is level number of i-th factor, 𝐾(𝑙,𝑖),𝑗 is mean 

value of j-th response for l-th level of i-th factor. 

2） Relative range of 𝑅𝑖𝑗 is:     𝑅𝑖𝑗
′ =

𝑅𝑖𝑗

∑ 𝑅𝑖𝑗
𝑁
𝑖=1

     (8) 

3） Comprehensive relative range of i-th factor is: 

𝑅𝑖
′ = ∑ 𝑤𝑗𝑅𝑖𝑗

′

𝑛

𝑗=1

                               (9) 

Finally, factors are sorted by 𝑅𝑖
′, and “contribution 

ratio” is used to select main factors for ANN. For certain 

disc, the corresponding cumulative contribution ratios are 

plotted in Figure 4, cumulative contribution ratio of first 8 

factors is 0.9628, and corresponding variables are 

(W6,H1,W3,W4,R4,R3,W2,H6). 

 

Figure 4: Variation of cumulative contribution ratio with 

number of factors 

 

3. BPNN training with virtual samples 
 

Main factors selected above and responses of DOE are 

respectively used as inputs and outputs of NN. Suppose 

relation between input vector 𝑥 ∈ 𝑅𝑚×1 and output vector 

𝑦 ∈ 𝑅𝑛×1 is: 

𝑦

= 𝑓(𝑥)                                            (10) 

A three-layered BPNN with topology “m-p-n” is used 

for approximation: 

𝑦̃
= 𝑓(𝜔, 𝑥)                                      (11) 

Optimized 𝜔  with weight number (𝑚 + 1)𝑝 + 

(𝑝 + 1)𝑛 should be found to minimize estimation error. 

Levenberg-Marquardt algorithm, an enhanced method of 

Moore-Penrose for over-determined question, is used to 

train NN in this paper. If ratio 𝜌 is used to select training 

samples for cross-validation, size of available data set, 

denoted as M’, should be: 

𝜌𝑀′ ≥ (𝑚 + 1)𝑝 + (𝑝 + 1)𝑛     (12)  

Normally, size of DOE samples, denoted as M, is 

much less than M’ and virtual samples could be used for 

this M’. Define i-th DOE sample as  𝑆𝑖 =
{𝑥𝑖1 … 𝑥𝑖𝑗 … 𝑥𝑖(𝑚+𝑛)} , where  𝑥𝑖(𝑚+𝑗) = 𝑦𝑖𝑗  and  𝑥𝑖𝑗 ∈
[−1,1].For each 𝑥𝑖𝑗, the perturbation result is: 

𝑥𝑖𝑗
′

= {

2 − (𝑥𝑖𝑗 + 𝛽 ∗ 𝑑𝑖𝑗)     𝑖𝑓  𝑥𝑖𝑗 + 𝛽 ∗ 𝑑𝑖𝑗 ≥ 1

𝑥𝑖𝑗 + 𝛽 ∗ 𝑑𝑖𝑗                            𝑒𝑙𝑠𝑒              

−2 − (𝑥𝑖𝑗 + 𝛽 ∗ 𝑑𝑖𝑗)      𝑖𝑓     𝑥𝑖𝑗 + 𝛽 ∗ 𝑑𝑖𝑗 ≤ −1

 (13) 

Where  dijϵ[−1,1]  is random noise 

and   βϵ[0,0.5] is noise intensity. This is a mirroring 

operation with threshold -1 and 1. 

If virtual samples are used to train BPNN, Eq. (11) 

will be: 

𝑦̃ + ∆𝑦 = 𝑓(𝜔, 𝑥 + ∆𝑥)               (14) 

Error of BPNN from Eq. (14) is: 

total error= approximation error  

+ generalization(estimation) error 

+ sample error 

Approximation error is decided by training algorithm; 

generalization error is decided by BPNN structure and 

coverage of problem domain; sample error is decided by 

size of virtual sample and noise intensity. If size of virtual 

samples is denoted as 𝑀𝑣, total error will be formulated as: 

𝜀∗ = 𝐺(𝑚, 𝑛, 𝛽, 𝑝, 𝑀, 𝑀𝑣)         (15) 

𝑀𝑣 = 𝑃𝑀 is used to generate uniformly distributed 

virtual samples where P is an integer. With Eq. (12), p will be: 

𝑝 ≤ ⌊
𝜌 ∗ 𝑀 ∗ (𝑃 + 1) − 𝑛

𝑚 + 𝑛 + 1
⌋      (16) 

For given P, the maximum p will be the best choice 

with the consideration of calculation complexity and 

generalization ability, and Eq. (15) can be simplified as: 

In Vapnik’s theoretical framework, approximation 

error increases with the increase of VC dimension (size of 

hidden layer, p), but estimation error decreases with the 

increase of p (Haykin 2011), the optimum p is determined 

by the point at which both errors assume a common value. 

Before the optimum condition is reached, the learning 

problem is over determined, beyond the minimum point, 

the learning problem is underdetermined. So a good p (and 

corresponding P) should be found to match size of DOE 

samples. Energy of sample error for this P is: 

𝜀𝑠𝑎𝑚𝑝𝑙𝑒 =
1

2
∑ ∑ 𝛽2

𝑗=𝑚+𝑛

𝑗=1

𝜀𝑑𝑖𝑗

𝑃𝑀

𝑖=1

                (18) 

Where  𝜀𝑑𝑖𝑗
 is energy of noise 𝑑𝑖𝑗  that can be denoted 



 

 

as𝜀𝑑, Eq. (18) is simplified as: 

𝜀𝑠𝑎𝑚𝑝𝑙𝑒 ≈
1

2
𝑃𝑀(𝑚 + 𝑛)𝛽2𝜀𝑑                  (19) 

dij is a random value, so there is a suitable “sample 

error” for given DOE samples, and it is reasonable to find 

an optimized pair (P, β) for this “sample error”.  

Strong noise disturbs original regularities which 

increases “approximation error”, weak noise is similar to 

boosting which increases “generalization error”, 

experiments show that for given P, there is a best β to 

generate virtual samples. 

 

4. NSGA-II for HPTD 
 

Evolutionary algorithms can search multiple 

objectives in parallel, among which NSGA-II is a good 

choice because it accelerates the optimization speed with an 

efficient non dominated sorting method; quality of the 

population is improved with crowding algorithm and elitist 

strategy instead of sharing function (Deb 2002). However, 

its computing ability is limited by population and iteration 

of GA, a good initial population should be used to improve 

the efficiency and quality of selection and evolution. 

Normally, initial population of GA is randomly 

generated for diversification and a large population is used 

to reach a global convergence and accuracy, but the 

optimization process will be prolonged significantly for 

complex problems. Some researchers take DOE samples 

and random samples as initial population. This paper 

constructs the initial population with 3 subsets, i.e. DOE 

samples, virtual samples and random samples, ratio for 

them are defined tentatively (for example 2:2:1). In Figure 

5, advantage of this synthetic method is described by the 

comparing of four Pareto fronts resulting from different 

initial populations. Obviously, Pareto front evolved from 

random samples is much more uniform (Figur. 5a, 5c), 

front evolved from DOE samples is much more smooth 

(Figure 5b), front evolved from a combination of DOE 

samples and virtual samples takes both of these advantages 

(Figure 5d). 

Figure 5: Pareto front based on different initial population  

Designer wants only one or several optimal solutions 

instead of so many Pareto optimal outcomes. Several 

methods can be used to select better solutions from this 

front. In this paper, “comprehensive proportion” is used as 

criterion for selection which is described as follows: 

1） For Pareto front with size K, each objective  𝑏𝑖𝑗 is 

renormalized as 𝜇𝑖
𝑗
: 

𝜇𝑖
𝑗

=
𝑏𝑖𝑗 − min

0≤𝑖≤𝐾
𝑏𝑖𝑗

max
0≤𝑖≤𝐾

𝑏𝑖𝑗 − min
0≤𝑖≤𝐾

𝑏𝑖𝑗
   ,      (20) 

𝑖 = 1,2 … 𝐾;     𝑗 = 1,2 … 𝑛 

2） Proportion of i-th solution on j-th objective is 

calculated with Eq. (21): 

𝑢𝑖
𝑗

=
𝜇𝑖

𝑗

∑ 𝜇𝑖
𝑗𝐾

𝑖=1

                                  (21) 

3） With weights from Eq. (6), a comprehensive 

proportion and a normalized value are calculated by 

Eq. (22): 

𝑢𝑖 = ∑ 𝑤𝑗𝑢𝑖
𝑗

𝑛

𝑗=1

;               𝑢𝑖
′

=
𝑢𝑖

∑ 𝑢𝑖
𝐾
𝑖=1

    (22) 

4） Good solutions are selected by 𝑢𝑖
′, The smaller 𝑢𝑖

′ is, 

the better a Pareto optimal will be. 

 

 

 

 

 

 

 

 

 

 

 

(a)Coupled BCs      (b) Distribution and direction of  

cooling flows 

Figure 6: details of thermo-structure BCs for “take-off” 

 

4. Case study 
 

In this paper, targets of optimization are: 1) Minimum 

mass (W) that should be less than 80kg; 2) Minimum radial 

deformation (D) that should be less than 1.95mm. 68 blades 

are fixed into mortises, each blade’s mass is 0.144kg and 



 

 

height is 56mm, distance from blade centroid to rotating 

axis is 298mm.Coupled flow-thermo-structure BCs for 

“take-off ” are shown in Figure 6a where “↑” represents 

equivalent pressure, “~” indicates heat transfer with 

mainstream flow, “” denotes zero displacement, 4 curves 

along border are cooling flows whose details are described 

by Figure 6b, parameters of this state are specified in Table 

1. 

Table 1 Working parameters for “take-off”  
Variable Value Variable Value 

Disc density 8210kg/m3 rotation 

speed of disc 

12,500 rpm 

Gas 

temperature 

1650k convection 

coefficient 

2200w/m2.k 

Pressure in 

duct 

35 atm   

speed of 

flow A 

0.1918kg/s source 

temperature 

of A 

907k 

speed of 

flow B 

2.4754kg/s source 

temperature 

of B 

968k 

speed of 

flow C 

0.5139kg/s source 

temperature 

of C 

681k 

speed of 

flow D 

0.7666kg/s source 

temperature 

of D 

791k 

(H1,H2,H4,H6,W2,W3,W4,W6,R3,R4) are selected as 

factors for DOE, span of each factor is summarized in 

Table 2, and (W1,W5,W7,H3,H5,R1,R2,R5,R6) are set as 

(45.0,42.0,60.0,195.0,140.0,280.0,105.0,5.0,6.0). 

Table 2 Spans of 10 factors for certain turbine disc 

(unit:mm) 
NO factor minimum maximum NO factor minimum maximum 

1 W6 5.0 9.0 6 W3 15.0 25.0 

2 H1 15.0 25.0 7 W4 45.0 55.0 

3 H4 30.0 40.0 8 H2 14.0 28.0 

4 H6 165. 175. 9 R3 235. 247. 

5 W2 90.0 110. 10 R4 155. 175. 

With the help of historical knowledge, A mixed-level 

design is generated with (W2,W3,W4,H2,R3,R4) at three 

levels and (W6,H1,H4,H6) at two levels, DOE of 

L36(3^6*2^4) is constructed. 

By sensitivity analysis, variables 

(W6,H1,W3,W4,R4,R3,W2,H6) are used as inputs of 

BPNN whose topology is “8-p-2”, different (𝑃, 𝛽) pairs 

are used to generate virtual samples. Levenberg-Marquardt 

algorithm with goal=5e-6 and 𝜌=0.9 is used to train BPNN. 

for given 𝑃, p should be: 

𝑝 ≤ ⌊
𝜌 ∗ 𝑀1 ∗ (𝑃 + 1) − 𝑛

𝑚 + 𝑛 + 1
⌋ =  ⌊

0.9 ∗ 36 ∗ (𝑃 + 1) − 2

11
⌋ 

Good (𝑃, 𝑝) pairs are (1,5),(2,8),(3,11),(4,14),(5,17) 

and so on,  several training sets are created for each pair 

with a series of 𝛽s whose initial value is 0.1 with step size 

√0.1  (i.e., 𝛽 =0.1,0.0316,0.01,0.00316…),best error for 

each “8-p-2” BPNN and corresponding 𝛽 are list in Table 

3. 

Table 3 36 test error of BPNNs with different topologies 

ID (P,p) 𝛽 test error ID (P,p) 𝛽 test error 

1 (1,5) 0.0316 1.13e-2 4 (4,14) 0.001 1.01e-2 

2 (2,8) 0.00316 7.21e-3 5 (5,17) 0.00036 1.20e-2 

3 (3,11) 0.00316 9.85e-3 6 (6,20) 0.0001 1.74e-2 

BPNN with structure “8-8-2” is selected as fitness 

function for further NSGA-II whose parameters are defined 

in Table 4. The initial population consists of DOE samples, 

virtual samples and random samples. Ratio of them is 

63:63:32. 

Table 4 Specifications of MOO 

Parameter Value Parameter Value 

population 158 decisions/objectives 8/2 

Generation 1000 Selection and replacement NSGA-II 

crossover probability 0.9 Mutation probability 0.1 

crossover operator Simulated binary Mutation operator Polynomial 

distribution index for crossover 20 distribution index for Mutation 20 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

(a) Scatter plot of Pareto front                 (b) Sorted proportions of 53 solutions in area B 

Figure 7: Result of NSGA-II 

 

The scatter plot of the two objectives by Pareto front is 

illustrated in Figure 7a, 53 solutions in area B are useable 

points, and location of “◊” is decided by optimization 

targets.  

Normalized comprehensive proportions of these 53 

solutions are calculated and sorted in Figure 7b, 5 

minimum solutions are better than the others. FEM of these 

5 solutions are reanalyzed and the best one is selected as 

the optimization solution. It can be noted that for given 

optimization targets, W6 should be set as maximum value 

to minimize radial deformation, H1,W2,W3,R3,R4 could 

be set as minimum value to minimize the mass,W4 and H6 

should be designed carefully. That is to say, flange details 

influence radio deformation greatly. 

 

5. CONCLUSIONS 
 
In this paper, mass and radial deformation are taken as 

mutually restricted targets to design HPTD. Virtual samples 

are generated to enlarge training set of NN; the 

generalization performance of NN, which is very important 

for MOO, is improved by the compromise of “hidden layer 

size”, “virtual sample size” and “noise intensity”; the 

smoothness and uniformity of Pareto front are improved by 

the hybrid initial population who is a combination of DOE 

samples, virtual samples and random samples. Latter 

technologies are explored based on former ones; MOO of 

HPTD is carried out step by step. 

Noise intensity  (β)  for virtual samples will be 

optimized in continuous space for a global optimal. More 

work will be done to compress the redundancy of DOE 

samples, metric such as max-min distance will be applied 

on these samples to select a subset with high information 

density, the computational cost will be reduced and 

advantage of virtual samples will be fully exploited. 

Furthermore, other surrogates will be studied on the virtual 

samples to provide fitness functions with better 

generalization ability. 
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