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Abstract. We develop an innovative decision support approach to hedge the path dependent risk of 

underlying asset price using options. Nowadays, traditional risk measures describe the risk of final payoff of 

assets. We define how much time averagely the price will be under a certain level before a certain date as 

Time Risk Measure. We develop a new decision support procedure to compute and hedge Time Risk Measure. 

Under Geometric Brownian Motion, the inverse Laplace expression of Time Risk Measure can be solved. 

This can be considered as a Geometric Brownian Motion version of Levy’s Arcsine Law.  
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1. Introduction 
 

This paper makes two contributions to decision 

support procedure in finance: (1) decision support to gauge 

a new risk measure of asset price path dependent behavior 

and (2) decision support to hedge the new risk measure 

using a new synthetic exotic American derivative. 

We define the expected length of time when the 

forward price of stock will be below a certain level (more 

precisely, expected value of the Lebesgue measure of set of 

all time t, such that at time t the forward price of stock is 

below a certain level) as Time Risk Measure. Nowadays the 

usual risk measure of asset price is concerned by terminal 

value, i.e. the final distribution of asset price a month later. 

But very limited study has been conducted on the path 

dependent behavior of asset price(Carr and Wu, 2005 and 

2009). Imagining that the equity holder and creditor of a 

company may have some tolerance about that the stock 

price stays below a certain level for a short period of time, 

they would like to measure the average length of time when 

the stock price will be under some dangerous level. So the 

time risk measure can be employed to gauge this type of 

risk in both theoretical and implied way. Either we can 

calculate the time risk measure assuming that the forward 

price follows a certain stochastic process, or we can 

calculate the implied time risk measure from option market 

data. 

The demonstration in Figure 1 shows the definition of 

Time Risk Measure. In the first panel, the line shows one 

realization of future process of an asset. In this example, 

the future process is generated by Geometric Brownian 

Motion with sigma of 0.3 and start point at 1. The 

horizontal length of shadow area shows Time Risk Measure 

of this realization with level of 0.9. The second panel 

shows 5 realizations of future processes. We estimate 

theoretical Time Risk Measure of an asset by taking 

expectation of Time Risk Measure of all possible 

realizations in the future.
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Figure 1 Demonstration of Time Risk Measure 

 

The first panel shows the example of Time Risk 

Measure for one Realization, which is the length of time 

when the future process will be below the certain level. In 

this example, the line shows one realization of future 

process generated by Geometric Brownian Motion with 

sigma of 0.3 and start point at 1. The horizontal length of 

shadow area shows Time Risk Measure with level of 0.9. 

The second panel shows 5 realizations of Geometric 

Brownian Motion with sigma of 0.3 and start point at 1. 

The Time Risk Measure is the expected length of time 

when the future process will be below the certain level. 

 

Also, the time risk measure itself is a payoff of an 

exotic American derivatives, can be replicated by a 

superposition of European options, and we name it Time 

Variance Swap. This makes the decision support procedure 

practical in option markets. The Time variance swap to the 

time risk measure is just like the variance swap to the VIX 

index. We construct the Time Variance Swaps with SPX 

options in CBOE and research the properties of Time 

Variance Swaps.  

We find that implied time risk measure of SPX Index 

is always higher than the theoretical value from the time 

risk measure formula for Black-Scholes assumptions. The 

premium could be from two aspects: The first aspect is the 

volatility skew caused by that the forward process does not 

follow exactly Geometric Brownian Motion, and has left 

heavy tailed distributions or jumps. We can verify this by 

checking both implied volatility skew of the option and the 

implied volatility skew of the Time Variance Swap. The 

second is the investors who hedges the time risk measure  

would like to higher price, so the time risk measure beta 

gives a negative return like volatility beta does.  

 

2. Methodology 
 

According to CBOE (2009)， the formula of VIX 

Index with maturity T is a numerical integral of out-of-

the-money call and put options. 
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2

𝑇
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𝐾𝑖
2 𝑒

𝑅𝑇𝑂𝑇(𝐾𝑖)

𝑖

 

Where 𝐾𝑖 is the i-th strike price, and R is the risk-free 

rate. 𝑂𝑡(𝐾, 𝑇) is the out-of-the-money option with strike 

𝐾𝑖  and maturity T. Demeterfi et al. (1999) introduces the 

derivation of the formula under assumptions of Black and 

Scholes (1973). Britten‐Jones and Neuberger (2000) 

provide another interesting proof of VIX index under 

diffusion process assumption. Carr and Wu (2005) 

introduces how the VIX evolves， from the old VXO 

version to the modern VIX version. Carr and Wu (2009) 

discusses the derivation of the VIX formula in a broader 



assumptions, an exponential Lévy process. This assumption 

is a very general assumption, which nests Merton 

model(Merton, 1976)，Variance Gamma model (Madan et 

al., 1998)，Inverse Gaussian model (Rydberg, 1997) and 

etc.(Schilling, 2004)  

We start with a risk-neutral probability measure ℚ 

defined on a probability space (Ω, ℱ,ℚ)  such that the 

forward price follows the equation: 

 

dFt = 𝐹𝑡−𝜎𝑡−𝑑𝑊𝑡

+∫ 𝐹𝑡−(𝑒
𝑥 − 1)[𝜇(𝑑𝑥, 𝑑𝑡) − 𝑣𝑡(𝑥)𝑑𝑥𝑑𝑡]

ℝ0
 

(1) 

 

Where 𝑊𝑡  is a Q-standard Brownian motion, ℝ0 

denotes the real line excluding zero, 𝐹𝑡−denotes the futures 

price just prior to any jump at time t , and the Lévy measure 

𝜇(𝑑𝑥, 𝑑𝑡) realizes to a nonzero value for a given x if and 

only if the futures price jumps from 𝐹𝑡− to 𝐹𝑡 = 𝐹𝑡−e
x at 

time t. The process 𝑣𝑡(𝑥) compensates the jump process, 

so that the last term in Equation is the increment of a Q-

pure jump martingale. 

Under the specification in Equation (1), the quadratic 

variation on the futures return from time t to T is 

𝑉𝑡,𝑇 ≡ ∫ 𝜎𝑠−
2 𝑑𝑠 + ∫ ∫ 𝑥2 𝜇(𝑑𝑥, 𝑑𝑠)

ℝ0

𝑇

𝑡

𝑇

𝑡

 

(2) 

And the VIX index is defined as the conditional risk-

neutral expectation of the annualized return variance over 

the next 30 calendar days: 

 

VIX2 = 𝐸𝑡
ℚ
[
1

𝑇 − 𝑡
𝑉𝑡,𝑇] 

(3) 

To understand the replication strategy and appreciate 

the economic underpinnings of the new VIX, we follow 

Carr and Wu [2004] in decomposing the realized return 

variance into three components: 
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(4) 

Where St  denotes the time-t spot index level. The 

first term can be represented as the superposition of out of 

the money (in terms of future price level) options, the 

second term can be replicated by a dynamical trading 

strategy holding 2ert [
1

𝐹𝑠−
−

1

𝐹𝑡
]futures at time s, and the 

third term is a higher order error caused by jump. 

 

We combine (3) and (4) to get the calculation formula 

for VIX. 
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(5)  
Where 𝑂𝑡(𝐾, 𝑇) is the out-of-the-money option price with 

strike K and maturity T. Carr and Wu (2009) have 

discussed two approximation error for VIX index. The first 

approximation error is the discretization error when the 

integral is estimated by discrete sum of real world options. 

The second approximation error is the error introduced by 

jump. 

 

Theorem 1 

2

𝑇 − 𝑡
𝑒𝑟(𝑇−𝑡)∫

1

𝐾2
𝑂𝑡(𝐾, 𝑇)𝑑𝐾

𝐾𝑚𝑖𝑛

0

=
2

𝑇 − 𝑡
𝐸𝑡 [

1

2
∫ 1𝐹𝑠−<𝐾𝑚𝑖𝑛𝜎𝑠−

2 𝑑𝑠
𝑇

𝑡

]

−
2

𝑇 − 𝑡
 ∫ ∫ [𝑓(𝐹𝑠−𝑒

𝑥) − 𝑓(𝐹𝑠−)
ℝ0

𝑇

𝑡

− 𝑓′(𝐹𝑠−)𝐹𝑠−(𝑒
𝑥 − 1)]𝑣𝑠(𝑥)𝑑𝑥𝑑𝑠 

(6) 

 

We call the length of time when the future price will 

averagely be below 𝐾0 , ∫ 1𝐹𝑠−<𝐾0𝜎𝑠−
2 𝑑𝑠

𝑇

𝑡
 , as the Time 

Risk Measure with level of 𝐾0 because it is a new type 

risk measure which describe intermediate behavior of asset 

price. For example, a financial institute may not only be 

concerned by the final payoff of an asset after a period of 

time, but also by its path dependent behavioral during the 

period. It is because the debt holders and the equity holders 

may have a tolerance that the asset price can be below a 

certain level, but not being too long. The Time Risk 

Measure can perfectly measure this type of risk. Also we 

define Time Risk Measure divided by total time period as 

Percentage Time Risk Measure. 

 

 



Corollary 1  

If the future process follows a driftless Geometric 

Brownian Motion: 

𝑑𝐹𝑡 = 𝐹𝑡𝜎𝑡𝑑𝑊𝑡 

The following equality exists: 
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Also we expand the Theorem 1 and its corollaries into 

call option version, and also we can find that correspond 

version of Time Variance Swap and Time Risk Measure with 

similar methods. 

 

 

Theorem 2 
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Corollary 2  

If the future process follows a driftless Geometric 

Brownian Motion: 

 

𝑑𝐹𝑡 = 𝐹𝑡𝜎𝑡𝑑𝑊𝑡 

The following equality exists: 
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The Corollary 1 and Corollary 2 shows that the Time 

Variance Swap can be expressed as the squared volatility 

times the Time Risk Measure. But if we want to get the 

explicit (or almost explicit) expression of Time Risk 

Measure 𝐸𝑡 [∫ 1𝐹𝑠>𝐾𝑚𝑖𝑛𝑑𝑠
𝑇

𝑡
]  for Geometric Brownian 

Motion, we need to use some version of Feynman-Kac 

Connection Formula (Pham, 2000). The similar problem 

for Brownian Motion is solved by Lévy (1939), and Lévy 

shows that 𝐸𝑡 [∫ 1𝐵𝑠>0𝑑𝑠
𝑇

𝑡
]equals to zero, and ∫ 1𝐵𝑠>0𝑑𝑠

𝑇

𝑡
 

follows an arcsine distribution. The Theorem 3 show that 

analytical expression of Laplace Transform of Time Risk 

Measure 𝐸𝑡 [∫ 1𝐹𝑠<𝐾𝑚𝑖𝑛𝑑𝑠
𝑇

𝑡
]. 

 

Theorem3 (Lévy’s Law for Geometric Brownian 

Motion) 

If the future process follows a driftless Geometric 

Brownian Motion: 

𝑑𝐹𝑡 = 𝐹𝑡𝜎𝑡𝑑𝑊𝑡 with 𝐹0 = 𝑥 
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We can find: 

𝑢(𝐾𝑚𝑖𝑛)(𝑇, 𝑥) = ∫ 1𝐹𝑠<𝐾𝑚𝑖𝑛𝑑𝑠
𝑇
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(10) 

 

 

The Laplace transform of 𝑢(𝑘)(𝑡, 𝑥)with respect to 

time,  �̂�(𝑘)(𝛼, 𝑥) have the explicit expression: 
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(11) 

 

Proof：See Appendix 

 

The inverse Laplace transform of (11) has no easy 

analytical expression, but the inverse Laplace transform can 

be easily calculated by the method of Rydberg (1997). The 

numerical method calculates the inverse Laplace transform 

very fast, which is million times faster than Monte Carlo 

method as we will see in the next section. Also, the 

numerical method enables us to calculate the inverse 

function of Time Risk Measure, which the Monte Carlo is 

not able to do. The following corollary shows that if the 

level k is chosen to be the current future level x, the 

analytical expression of Time Risk Measure can be found.  



3. Data 
The data is End-of-Day option market data US CBOE. 

The SPX Option data comprises monthly and weekly 

contracts from Feb 2 2002 to Apr 22 2016, and the SPX 

Option data do not include Wednesday contracts and 

seasonal contracts. In this paper, we focus on the contract 

with the maturity nearest to 30 calendar days. The mid 

quote is used in all the following research. The data points 

without any valid bid price in a day are removed from 

sample. 

As suggested by Coval and Shumway (2001), we use 

the normal return rather than log return. Because options 

always shift from out-of-the-money to in-the-money or 

from in-the-money to out-of-the-money, the value of option 

often change from a large value to near zero, or from near 

zero to a large value. The log return could be problematic 

in these situations. For example, when option value goes to 

near zero, log return could be negative infinity, but normal 

could be -100%. Therefore, in our study, we choose normal 

return rather than log return. 

 

4. Empirical Results 
 

First, we construct Time Variance Swaps with level of 

100%, 97.5%, 95%, 90%, 85% and 80% and calculate the 

Implied Percentage Time Risk Measure by Theorem 3. The 

result is shown in Figure 2. The implied Percentage Time 

Risk Measure skyrocket when the market panics in 2008, 

2010, 2011 and 2015. Also, we find that the Percentage 

Time Risk Measure with lower level will change more 

during the market panic. In Table 1, we see the medium of 

Percentage Time Risk Measures with level of 100%, 97.5%, 

95%, 90%, 85% and 80% are repectfully 65.61%, 39.19%, 

24.34%, 10.81%, 5.17%, 2.41%. This results are higher 

than the theoretical values assuming volatility is 15. This 

means market participants trade the Time Risk Measures 

higher than the theoritical price. 

We can also find this phenominon in the realized price 

of Time Variance Swaps. In Figure 3, the realized prices of 

Time Variance Swaps are sightly higher than the theoritical 

prices in all levels of 100%, 97.5%, 95%, 90%, 85% and 

80%. There are two reasons: (1) Like Variance Swap, Time 

Variance Swap also has the premium that the buyers who 

wants to hedge the Time Risk Measure and the volatility 

risk need to pay higher and the sellers of the derivative 

acquire more to tolerance the risks. (2) Time Variance Swap 

has also implied volatility skew to price in the tail risk just 

as option does.  

 

Figure 2 Implied Percentage Time Risk Measure of SPX Index 

This figure shows Implied Percentage Time Risk Measure of SPX Index calculated by Theorem 3. 

 

 

 



Table 1 Statistics of Implied Percentage Time Risk Measure of SPX Index 

This table shows statistics of Implied Percentage Time Risk Measure of SPX Index calculated by Theorem 3. 

Implied Percentage Time Risk Measure of SPX Index 

  100% 97.50% 95% 90% 85% 80% 

Mean 65.00% 39.58% 25.70% 12.48% 6.57% 3.57% 

Medium 65.61% 39.19% 24.34% 10.81% 5.17% 2.41% 

Stdev 6.16% 8.47% 8.80% 7.24% 5.76% 4.69% 

Variance 0.0038 0.0072 0.0078 0.0052 0.0033 0.0022 

Kurtosis 10.8911 0.7078 2.0013 8.9690 25.1620 58.3978 

Skewness -1.8774 0.2301 0.9577 2.1714 3.5913 5.6422 

 

Figure 3 Comparison of the Realized Time Variance Swap and the Theoretical Time Variance Swap 

 

The four panels compare respectively realized Time Variance Swap price and the theoretical Time Variance Swap Price by 

Theorem 3 with level of 100%, 97.5%, 95% and 90% of current future price. We find the market Time Variance Swap prices 

are higher than the theoretical Time Variance Swap prices in all four panels. 



The first reason can be shown by the negative average 

of returns of Time Variance Swaps. In Table 2. The daily 

returns of Time Variance Swaps with all level of 100%, 

97.5%, 95%, 90%, 85% and 80%, have negative mean and 

negative medium. The mean and medium of return of Time 

Variance Swap with lower level become more negative. We 

also see positive skewness of returns of Time Variance 

Swaps because that Time Variance Swaps usually have 

negative return but during market crushes they have very 

high returns. In Figure 4, we plot the arithematic 

cumulative returns Time Variance Swaps. We see they 

decreases smoothly except some spikes when market 

crushes happen. We see the lower level the Time Variance 

Swap is with, the cumulative return the Time Variance 

Swap has. This pheonominon that the options (or variance) 

are overpriced because investors have negative preference 

of volatility increasing, can be found in many literatures: 

Coval and Shumway (2001) find that zero-beta at-the-

money straddle positions produce average losses of 

approximately three percent per week. Jackwerth (2000) 

test the strategies which involves selling the put options 

with moneyness of 0.95 and 1.00. The number of puts sold 

is chosen such that the betas of the options strategies are 

about 1. Both of the strategies outperform purchasing the 

market index. Carr and Wu (2009) propose to use the 

difference between the realized variance and the variance 

swap rate to define the variance risk premium. They find 

that the variance risk premiums are strongly negative for 

the S&P and Dow indexes. Bollerslev et al. (2009)use 

variance risk premium as a market pricing factor, and find 

that variance risk premium is powerful in explaining the 

time-series variation in post-1990 aggregate stockmarket 

returns. Cremers et al. (2015) examine the performance of 

the pure vega portfolio and pure gamma portfolio by 

buying and short selling the near-term and long-term beta-

zero straddles in S&P 500 futures options. Both of the 

portfolios have negative historical mean.  

 

 

Table 2 Statistics of Daily Returns of Time Variance Swap in CBOE SPX market 

The daily return is calculated by holding the Time Variance Swap with certain level (100%, 97.5%, 95%, 90%, 85% and 

80% of current future price) for one day and rebalancing at the close on each day. The return is not log return, but normal 

return. 

Return 
TimeVarianceSwa

p100 

TimeVarianceSwa

p97.5 

TimeVarianceSw

ap95 

TimeVarianceSw

ap90 

TimeVarianceSw

ap85 

TimeVarianceSw

ap80 

Mean -0.03046 -0.04058 -0.05033 -0.07563 -0.11448 -0.15511 

Median -0.09187 -0.11119 -0.12238 -0.1429 -0.16813 -0.2 

Stdev 0.359431 0.38556 0.406369 0.424324 0.54044 0.862928 

Skewness 2.742866 3.491815 4.365185 4.524768 10.69604 26.07735 

Kurtosis 23.35196 35.17193 51.20367 45.77026 262.1318 1055.414 



N 3564 3564 3563 3554 3507 3095 

Figure 4 Cumulative Return of Time Variance Swap in CBOE SPX market 

The daily return is calculated by holding the Time Variance Swap with certain level (100%, 97.5%, 95%, 90%, 85% and 

80% of current future price) for one day and rebalancing at the close on each day. At the rebalancing, the portfolio will hold the 

same amount of value each day. Therefore, the cumulative return is the arithmetic sum of daily return of Time Variance Swap. 

 

The second reason is that there is implied volatility 

skew in Time Variance Swaps. In other words, the 

Geometric Brownian Motion is not a perfect assumption for 

underlying asset in option pricing. In Figure 5, we can see 

similar pattern shared by implied volatility skew in both 

Time Variance Swaps and put options. We see the “smirk” 

pattern that the Time Variance Swap with lower level has a 

higher volatility. As Jackwerth (2000) found, typically after 

1987 crash, the option traders have priced the tail risk of 

stock on options. Therefore, on one hand, we can use 

implied volatility skew as a pricing tool to overcome the 

shortage of Geometric Brownian Motion. On the other 

hand, we can use more sophisticated assumptions, such as 

Variance Gamma (Madan et al., 1998), Inverse Gaussian 

(Rydberg, 1997) and etc., to price the Time Variance Swaps.

 

Figure 5 The Percentage Time Risk Measure Skew and Black-Scholes volatility Skew 

The left panel is the Percentage Time Risk Measure Surface and the right panel is Black-Scholes volatility surface. Just 

like the Black-Scholes volatility surface, the Percentage Time Risk Measure Surface is the implied Percentage Time Risk 

Measure with different levels.

 

5. Conclusion 
 

The study has two significances to decision support in 

option markets. First, we help investors to gauge a new 

type of path dependent risk, which we term Time Risk 

Measure. It describes the average length of time when the 

asset price will stay below some level during a period of 

time. So we are able to manage not only the risk of terminal 

asset price but also the path dependent risk of the asset 

price. Second, we provide the new synthetic derivatives, 

Time Variance Swaps, to enable investors to hedge the new 

type of risk.  

In this study, we also have other important findings. 

These include the expression of integration of out-of-the-

money options under assumption of exponential Lévy 

process. We have derived the almost analytical expression 

of how long a Geometric Brownian Motion process will 

stay below a given level averagely. The result is given in an 

inverse Laplace transform function, which significantly 

simplifies the computation.  
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