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Abstract. In the field of industrial management, demand forecasting is important for production planning and 

inventory management. In the case of retail store chains which sell large-variety of merchandises in various 

regions, problems such as over-stocking and waste disposal are being still occurred caused by demand fluctuation 

depending on changes in weather conditions. By analyzing various kinds of big data which can be stored in 

databases, it is desirable to improve the accuracy of demand forecasting and realize effective inventory 

management with micro-perspective. However, especially in case of food products, demand fluctuation would be 

highly influenced by sensible temperature that consumers feel more than absolute weather conditions. In this study, 

we propose the method of quantifying a sensible temperature index for demand forecasting by analyzing digital 

text data of Twitter. This method is based on the assumption that information of sensible temperature of public 

consumers is appeared in Twitter data. We analyze the real data by applying our proposed model for sensible 

temperature quantification. 
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1. INTRODUCTION 
 
In the field of industrial management, demand forecasting 

is important for production planning and inventory 

management. In the case of retail store chains which sell large-

variety of merchandises in various regions, problems such as 

over-stocking and waste disposal are being still occurred 

because demand fluctuation depending on changes in weather 

conditions. By analyzing various kinds of big data which can 

be stored in databases , it is desirable to improve the accuracy 

of demand forecasting and realize effective inventory 

management with micro-perspective. However, especially in  

case of food products, demand fluctuation would be highly 

influenced by sensible temperature that consumers feel more 

than absolute weather conditions. For example, the demand of 

cold Chinese noodle depends strongly on sensible temperature 

felt by consumers. Though the sensible temperature is related 

with absolute weather condition, it does not perfectly match 

absolute temperature. If consumers’ sensible temperature can 

be quantified, this information is useful for demand forecasting. 
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Quantifying the sensible temperature has been studied so 

far. It has been revealed that sensible temperature is mainly  

affected by weather conditions such as relative humidity and 

wind-speed. Missenard’s effective temperature, NET (Net  

Effective Temperature), and Discomfort Index are popular 

examples based on these viewpoints. (Missenard, 1959;  

Hentschel, 1987; Thom, E. C., 1959). However, the sensible 

temperature is affected by not only weather conditions but also 

human conditions such as amount of wearing clothes and 

metabolic rate. PMV (Predicted Mean Vote) and SET (Standard 

Effective Temperature) are the popular indices which consider 

human conditions (Fanger, 1972; Gagge et al., 1986;  

Matzarakis, 2001; Spagnolo and de Dear, 2003; Tinz and 

Jendritzky, 2003). 

From the above discussion, it is desirable to create the 

sensible temperature index which can be useful for demand 

forecasting. Our study consists of two parts; the first one is to 

quantify the sensible temperature and the other is to predict it  

so as to utilize it for demand forecasting. In this paper, we 

propose the method of quantifying sensible temperature by 

analyzing digital text data of Twitter. We realize the modeling  

of temperature sensation of public consumers by utilizing  

Tweet data. We discuss the effectiveness of our proposed 

method for the sensible temperature quantification and try to 

reveal factors that influence sensible temperature. 

 

2. PRE-ANALYSIS 
 

In this study, we deal with both Japanese Tweet data with 

location information (1/10 sampling) and weather data 

(AMeDAS Tokyo). The digital text data of Tweet is seemed to 

have various characteristics which can’t be seen in other text 

data. So we should grasp these characteristics and consider 

them adequately for later analysis .  

About the weather data, we checked seasonal fluctuations 

of each weather element. Finally, to verify the validity of 

utilizing Tweet data for this study, we take up factors which  

can be related to temperature sensation within Tweet data and 

compared it with weather data. 

 

2.1 Tweet Data 
 

The observed period of Tweet data is from September 1st, 

2012 to September 30th, 2015 and total number of tweets is 

15,495,108. They include the date and time which are posted 

and the information of latitude and longitude. Figure 1 shows 

the transition of the number of tweets per day. It shows that the 

number of tweets increases gradually and falls sharply in May, 

2015.  

Next, as a possible factor which influences the fluctuation 

of the number of tweets, we take up the day of week. Daily  

factor like day of week can be influential factor. Average 

number of tweets of each day of week is shown in Figure 2. 

According to this figure, the averages of tweets posted on 

weekend such as Saturday and Sunday are likely to be larger 

than those of weekday. This tendency indicates the fact that the 

number of tweets is in proportion to the length of spare time. 

Besides, the reason why the number of Sunday’s tweet is larger 

than that of Saturday’s may be that the rate of user who is off 

in Sunday is higher than that of Saturday. From this analysis, 

 
Figure 1: Transition of the number of tweets  

 

 

Figure 3. The geographical distribution of the number of 

tweets. (The source of map of japan is Geospatial 

Information Authority of Japan) 

 

 
Figure 2: Average number of tweets of each day of week 

 



for appropriate analysis, it is necessary to eliminate “the day of 

week” effect when we utilize factors which are related to the 

number of tweets. In this study, we apply ratio-to-moving-

average method to do so (Tseng et al., 2001). 

Finally, we analyze the geographical distribution of the 

number of tweets (shown in Figure 3). It shows that the number 

of tweets in the center of the Kanto region (e.g. Tokyo) and the 

Kansai region (e.g. Osaka) have the majority. This tendency is 

thought to result from concentration of population and 

abundance of active users of Twitter in urban areas. 

 

2.2 Weather Data 
 

This weather data is observed at AMeDAS Tokyo (located 

in Tokyo) and its period is the same as that of Tweet data. They 

include weather elements such as Average Temperature T[℃], 
Minimum Temperature Tmin [℃] , Maximum Temperature 

Tmax[℃], Relative Humidity H[%], Wind-speed W[m/s], Total 

Rainfall TRF[mm], Maximum Snowfall MSF[cm] Solar Time 

ST[hour] and Total Solar Radiation TSR[MJ/m2]. Hereinafter, 

weather element with the subscript t denotes the weather 

element of term t. 

Figure 4: Transition of Average Temperature, Wind-speed, 

Relative Humidity and Total Rainfall 

Among weather elements which we state previously, we 

take up Average Temperature, Relative Humidity, Wind-speed 

and Total Rainfall and visualize the transitions of them in  

Figure 4. 

In Figure 4(a), the time series of Average Temperature 

has cyclic ups and downs periodically. In addition, the Relative 

Humidity repeats the up-and-down little by little and the 

degree of its movement is smaller within the period from June 

to September than other periods. Figure 4(b) shows the 

tendency that strong wind is likely to arise in August, 

September and October and occasionally in other periods. 

Figure 4(c) shows that Total Rainfall is likely to be high in  

October. In addition, it snows only in January or February in  

observed regions though it is not indicated in Figure 4. The 

transitions of 𝑇 min , 𝑇 max , ST and TSR have similar tendency 

to the Average Temperature T. 

 

2.3 Comparison of Tweet Data and Weather Data 
 

 In order to utilize tweet data for quantifying temperature 

sensation, we apply the morphological analysis to Tweet data 

and calculate the rate of tweets including the words “hot” and 

“cold” per day respectively. The relationship between each rate 

and Average Temperature is shown in Figure 5. 

Figure 5: Transitions of Average Temperature and hot/cold 

tweet rate (plus area is hot’s and minus area is cold’s) 

 

Figure 5 shows that there is a measurable correlation  

between the Average Temperature and the hot/cold tweet rate, 

which declare the validity of utilizing hot/cold tweet rate for 

quantifying temperature sensation. On the other hand, we can 

find several days with a gap between Average Temperature and 

hot/cold tweet rate. On these dates, it can be considered that 

the temperature sensation felt by people deviates from one 

based on Average Temperature. In next section, we assume that 

hot/cold tweets are generated by the basis of sensible 

temperature and give the definition of sensible temperature by 

the hot/cold tweet rate. 

 

3. PRELIMINARIES 

  

In this section, we explain two types of conventional 

prediction models which are important for our study. One is a 

 

(c) Total Rainfall 

 
(a) Average Temperature and Relative Humidity  

 

(b) Wind-speed 



method which tries to reveal how the inputs affect the output. 

For this purpose, Linear Regression Model and Logistic 

Regression Model (Trevor, 2009) can be applied. The other is 

time series analysis such as Autoregressive model (Shumway, 

2010). 

 
3.1 Linear Regression (LinR) Model 

 

Linear Regression Models are used to predict one 

dependent variable from some given independent variables. 

Let 𝑦𝑖 ∈ ℝ be the dependent variable of the i-th case and 𝒙𝑖 ∈
ℝ𝑑+1 be the corresponding independent variable vector (i = 1, 

2, …, n). The regression model is indicated below.  

 

 𝑦𝑖 = 𝜷T𝒙𝑖 + 𝜀𝑖 (1)  

 𝜀𝑖~𝛮(0, 𝜎2) (2)  

 

Here β = (β0 , β1 , …, βd
)T  is the partial regression 

coefficients and 𝜀𝑖 is the error term which follows a normal 

distribution with the mean equals to 0 and the variance equals 

to 𝜎 2. When 𝑑 ≥ 2, it is called multiple linear regression and 

in case of 𝑑 = 1, it is called simple linear regression. Partial 

regression coefficient vector 𝜷 is mainly estimated based on 

least squares method. This is the method to determine 

parameters so as to minimize the summation of square errors.  

Optimization problem is as follows: 

 min
𝜷

    ∑ 𝜀𝑖
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝜷T𝒙𝑖)
2

𝑛

𝑖=1

 (3)  

 

3.2 Logistic Regression Model 
 

Logistic Regression Model is the appropriate regression 

model to conduct when the dependent variable is binary or rate 

value. Let 𝑦𝑖  be the dependent variable of the i-th case and 𝒙𝑖 

be the corresponding independent variable. The model has the 

form 

 

 logit(𝑦𝑖) = log(
𝑦𝑖

1 − 𝑦𝑖

) = 𝜶T𝒙𝑖 (4)  

 
𝜶 = (𝛼0, 𝛼1,… , 𝛼𝑑

) is a partial regression coefficient vector. 

The parameter 𝜶 is usually estimated by the maximum log-

likelihood estimator.  

 

3.3 Autoregressive(AR) Model 
 

The autoregressive model is the most basic model for 

time-series analysis. This model is based on the idea that the 

current value of series can be expressed as a function of some 

past values. Given time-series data 𝑦1 , 𝑦2 , … , 𝑦𝑛  , the 

autoregressive model is expressed as follows: 

 

 𝑦𝑡 = ∑ 𝑎𝑖 𝑦𝑡−𝑖 + 𝑣𝑡

𝑝

𝑖=1

 (5)  

 

Here, p defines the parameter dimension which determine 

how many previous terms are considered and corresponding 

model is expressed as AR(p). p is likely to be determined based 

on AIC criteria. The parameter 𝑎𝑖   is the autoregressive 

coefficient and 𝑣𝑡  is a white noise which follows a normal 

distribution with the mean 0 and the variance 𝜎𝑣
2 . The 

parameter 𝑎𝑖  is determined based on the maximum likelihood  

estimation. 

 

3.4 Vector Autoregressive(VAR) Model 
 

The Vector Autoregressive (VAR) model is an extended 

model of AR model to multivariate data. Let 𝒀𝑡 ∈ ℝ𝐷 be the 

D dimensional data of term t. Then, given time-series data 

𝒀1, 𝒀2, … , 𝒀𝑛  , the Vector Autoregressive model is given as 

follows:  

 

 𝒀𝑡 = ∑ 𝑨𝑖 𝒀𝑡−𝑖 + 𝒆𝑡

𝑝′

𝑖=1

 (6)  

 

The matrix 𝑨𝑖 ∈ ℝ𝐷×𝐷  is the autoregressive coefficients 

matrix. 𝒆𝑡   is D dimensional white noise which follows a 

normal distribution with mean 0D (zero vector in D-

dimensions) and variance-covariance matrix 𝚺 ∈ ℝ𝐷×𝐷. 

In case of conducting time-series analysis, we should 

confirm the stationarity of the data. The stationarity of a time 

series data is the characteristic that probability distribution 

doesn’t change when shifted in time and the required factor 

when applying time-series analysis. In brief, the parameters  

such as the mean and variance don’t change and don’t follow 

any trend over time. If a time-series data doesn’t satisfy the 

stationarity, it needs to take appropriate preprocessing such as 

differential conversion and log conversion so as to satisfy 

stationarity (Shumway, 2010). 

 

4. UTLIZING THE SENSIBLE TEMPERATURE 
 

To utilize the sensible temperature for demand forecasting, 

it is necessary to quantify the sensible temperature felt by 

consumers. In this study, we realize the modeling of 

temperature sensation by utilizing Tweet data. Besides, 

looking towards demand forecasting, the prediction of future 

sensible temperature is necessary. For example, if the lead-time 



is one day, the shop keeper should predict the tomorrow 

demand by using the predicted sensible temperature and make 

an order. The predicting experiment of sensible temperature is , 

therefore, conducted in section 4.2. Perspective of our study is 

illustrated in Figure 6. 

 

Figure 6: Perspective of this study 

 

4.1 Quantifying the Sensible Temperature  
 

In this section, we will explain the method of quantifying 

sensible temperature. In this method, we utilize the hot/cold 

tweet rate (stated at section 2.3) and the observed average 

temperature. 

 

4.1.1 Overview of Quantifying Method 

 

Let 𝑟𝑡
ℎ𝑜𝑡  and 𝑟𝑡

𝑐𝑜𝑙𝑑  be the rate of tweets including the 

word “hot” and “cold” at the time t (day) respectively. Besides, 

let N be the number of terms (t = 1, 2, …, N). Then, the hot 

tweet rate 𝑟𝑡
ℎ𝑜𝑡   can be regarded as the index showing the 

degree of temperature sensation of hot that people are feeling 

and the cold tweet rate 𝑟𝑡
𝑐𝑜𝑙𝑑 is the same for cold sensation. 

Therefore, the relation model between the rate 𝑟𝑡
ℎ𝑜𝑡(𝑟𝑡

𝑐𝑜𝑙𝑑) and 

the average temperature 𝑇𝑡   can lead to quantifying the 

sensible temperature. 

To quantify the relationship between 𝑟𝑡
ℎ𝑜𝑡   and 𝑇𝑡  , we 

use the regression model. In this method, we set 𝑟𝑡
ℎ𝑜𝑡  as the 

dependent variable and 𝑇𝑡  as the independent variable though 

the opposite case can be considered. This setting is based on 

the assumption that the hot rate 𝑟𝑡
ℎ𝑜𝑡  includes a specific noise 

and has a mean conditioned by 𝑇𝑡  . By constructing this  

regression model, we can obtain the regression 

formula  �̂�𝑡
ℎ𝑜𝑡 = 𝑓(𝑇𝑡|𝛼0 , 𝛼1) . Then, 𝑓  can be regarded as 

the function that can calculate an expected value of 𝑟𝑡
ℎ𝑜𝑡  

conditioned by the temperature 𝑇𝑡 . Here, the inverse function 

𝑔(𝑟𝑡
ℎ𝑜𝑡|𝛼0 ,𝛼1

) =  𝑓 −1(𝑇𝑡|𝛼0,𝛼1) can be defined. Therefore, 

𝑔(𝑟𝑡
ℎ𝑜𝑡|𝛼 0,𝛼1), which is obtained by conducting the formula 

deformation so as to form like “ 𝑇𝑡 = ”, can be regarded as 

the function to calculate the most common value of 

temperature when the value of 𝑟𝑡
ℎ𝑜𝑡   is given. Since the 

temperature calculated by the function 𝑔  is the reasonable 

value based on people’ sensation, we define this calculated 

temperature as sensible temperature based on hot sensation. 

Though we only explained the case of 𝑟𝑡
ℎ𝑜𝑡  so far, the 

same processing can be conducted for 𝑟𝑡
𝑐𝑜𝑙𝑑  . Namely, two  

sensible temperatures can be obtained per t. Let 𝑆𝑡
ℎ𝑜𝑡  be the 

sensible temperature calculated from 𝑟𝑡
ℎ𝑜𝑡  and 𝑆𝑡

𝑐𝑜𝑙𝑑  be one 

based on 𝑟𝑡
𝑐𝑜𝑙𝑑  . The ultimate sensible temperature 𝑆𝑡  is  

calculated by the weighted average of 𝑆𝑡
ℎ𝑜𝑡  and 𝑆𝑡

𝑐𝑜𝑙𝑑  . The 

schematic illustration of this method is shown in Figure 7. 

 

4.1.2 Algorithm 

 

In this subsection, we state the algorithm of quantifying 

the sensible temperature. Since the dependent variable is rate 

value, we select the logistic regression model to obtain formula 

which expresses relations between the tweet rate and the 

temperature. 

 

Step1) Estimation of Coefficient 

The partial regression coefficients of logistic regression 

model defined as Eq. (7) is estimated. 

 

 logit(�̂�𝑡
ℎ𝑜𝑡) = log (

�̂�𝑡
ℎ𝑜𝑡

1 − �̂�𝑡
ℎ𝑜𝑡

) = 𝛼0 + 𝛼1𝑇𝑡  (7)  

 

Step2) Obtaining the Transformation Equation 

By utilizing the partial regression coefficients which are  

obtained at Step1, 𝑟𝑡
ℎ𝑜𝑡  can be converted into 𝑆𝑡

ℎ𝑜𝑡 . 

 

 
Figure 7: Schematic illustration of quantifying the sensible 

temperature 

 

   (a) Purposes of this study 

 

(b) Practical usage 



 𝑆𝑡
ℎ𝑜𝑡 = 𝑔(𝑟𝑡

ℎ𝑜𝑡|�̂�0, 𝛼1) (8)  

 𝑔(𝑟𝑡
ℎ𝑜𝑡|�̂�0, 𝛼1) =

1

𝛼1
log

𝑟𝑡
ℎ𝑜𝑡

𝑒�̂�0 (1 − 𝑟𝑡
ℎ𝑜𝑡)

 (9)  

 

Step3) 

Step1-2 are conducted for 𝑟𝑡
𝑐𝑜𝑙𝑑  and 𝑆𝑡

𝑐𝑜𝑙𝑑  is obtained. 

 

Step4) Calculation of Sensible Temperature 

Sensible temperature St is calculated in the following  

formula.  

 

 𝑆𝑡 =
𝑟𝑡

ℎ𝑜𝑡

𝑟𝑡
ℎ𝑜𝑡 + 𝑟𝑡

𝑐𝑜𝑙𝑑 𝑆𝑡
ℎ𝑜𝑡 +

𝑟𝑡
𝑐𝑜𝑙𝑑

𝑟𝑡
ℎ𝑜𝑡 + 𝑟𝑡

𝑐𝑜𝑙𝑑 𝑆𝑡
𝑐𝑜𝑙𝑑  (10)  

 

4.2 Predicting the Sensible Temperature  
 

In order to utilize the sensible temperature for demand 

forecasting, the future value of sensible temperature is required  

when an order should be made. Therefore, it is necessary to 

predict the sensible temperature. In this section, we conduct 

prediction experiment by applying existing prediction methods. 

Besides, we try to reveal factors which influence sensible 

temperature. For this analysis, we set four prediction patterns 

indicated in Table 1. Hereinafter, let 𝒘𝑡 ∈ ℝ𝑽  be the weather 

elements vector of the term t and 𝒘𝑡
𝑓

∈ ℝ𝑽  be the estimated 

value of 𝒘𝑡  by weather forecast (elements will be described 

later). �̂�𝑡 in Table 1 is the predicted weather elements vector 

of term t obtained by applying VAR model. 

 

Table 1. Prediction Patterns  

 

To predict the sensible temperature of the next day, it is 

not appropriate to utilize the current actual sensible 

temperature. This is because it is necessary to calculate it by 

using huge tweet day every day. Considering the practical use, 

it is not reasonable to take a labor of counting the number of 

tweets every day. Then, we construct a model to predict the 

sensible temperature without any actual value but in the form 

of an estimated value for prediction. 

To conduct the prediction experiment based on four 

patterns indicated in Table 1, we select existing prediction 

methods for each pattern. In Pattern 1, the multiple linear 

regression method is applied. In Pattern 2, after the multip le 

regression at the term (t-1), the AR model is applied in order 

to predict the sensible temperature of the next day from the 

previous day. In Pattern 3, we apply the VAR model whose 

observations are vectors composed of the estimated sensible 

temperature and weather conditions at the term t. Finally, 

Pattern 4 includes the additional multiple regression whose 

independent variables vector is the combined form such as 

(𝑆𝑡 ,𝒘𝑡
𝑓

). 

 

5. EXPERIMENT 

 
We apply our method of quantifying the sensible 

temperature to actual data and try to verify its validity. Besides, 

we try to extract factors which would influence the sensible 

temperature through prediction experiment. 

 

5.1 Applying the Quantifying Algorithm 
 

First, we apply the proposed algorithm of quantifying the 

sensible temperature that stated in chapter 4 to real data. The 

applied period is from September 1st, 2012 to September 30th, 

2015 (1125 days). Before the analysis, we eliminate “the day 

of the week” effect by applying ration-to-moving-average 

method to hot/cold tweet rate (Tseng et al., 2001).  

Figure 8: Transitions of St and Tt 

 

Figure 8 shows the calculated sensible temperature and 

the observed average temperature. It shows that though rough 

tendency of the sensible temperature is similar to that of the 

average temperature, the variability of sensible temperature is 

much larger than that of average temperature. Besides, there 

exist dates whose gaps between average temperature and 

sensible temperature are extremely large. There is room for 

further consideration about this result. In addition, to analyze 

relationship between the average temperature and the sensible 

Pattern 
Independent 

Variables 

Dependent 

Variables 

Applied 

Method 

1 𝒘𝑡
𝑓

 

�̂�𝑡 

LinR 

2 
�̂�𝑡−1  predicted 

from 𝒘𝑡−1 

LinR + AR 

3 
Combined Vector 

(�̂�𝑡−1, 𝒘𝑡−1 ) 
(�̂�𝑡 ,�̂�𝑡) LinR + 

VAR 

4 
𝑆𝑡 (predicted from 

�̂�𝑡−1) and 𝒘𝑡
𝑓

 
�̂�𝑡 

LinR + AR 
+ LinR 

 



temperature per month, we visualize the mean values and the 

standard deviations of them in Figure 9. 

From Figure 9, we can identify that the sensible 

temperature tends to be higher than the average temperature 

from January to July and lower from August to December. 

Besides, especially in March and May (easy to change 

temperature in short term), July (temperature rises sharply) and 

October (temperature falls sharply), the gap between the 

average temperature and the sensible temperature is large. This 

result suggests the measurable effect of sharp changes in  

temperature. In addition, the standard deviation of the sensible 

temperature is much larger than that of the average temperature 

especially in February and August, which imply the effect of 

other factors in these months. 

 

5.2 Prediction Experiment 
 

We state the prediction of the sensible temperature. The 

assumed situations are the same as indicated in the section 4.2. 

There are two purposes of this experiment. One is to utilize the 

future value of sensible temperature for demand forecasting. 

The other is to identify factors which would influence the 

sensible temperature and its validities. 

 

5.2.1 Experimental Conditions 

 

We set the data during the period from September 1, 2012 

to September 30, 2014 as training data (N = 760) and the data 

from October 1, 2014 to September 30, 2015 as test data (Ntest 

= 365). In this experiment, the unit of term (i.e. t) is denoted 

that to correspond one day. Evaluation indices are the mean 

average error (MAE) and coefficient of determination  

(expressed as 𝑅2). These are calculated in Eq. (11) and (12). 

The independent variables of first linear regression model 

in all patterns are Tt, Tt - Tt-1, Ht, Wt, TRFt, TSRt, 𝐷𝑉𝑡
1 , 𝐷𝑉𝑡

2 , 

𝐷𝑉𝑡
3   and 𝐷𝑉𝑡

4  , whose 𝐷𝑉𝑡
1  , 𝐷𝑉𝑡

2 , 𝐷𝑉𝑡
3   and 𝐷𝑉𝑡

4
  are the 

dummy variables for Tt which conform to the rules: 𝐷𝑉𝑡
1 = 1 

if 𝑇𝑡 ≥ 25 , otherwise 𝐷𝑉𝑡
1 = 0  (and so are others), 

𝐷𝑉𝑡
2 = 1 if 25 > 𝑇𝑡 ≥ 20, 𝐷𝑉𝑡

3 = 1 if 20 > 𝑇𝑡 ≥ 15 , 
and 𝐷𝑉𝑡

4 = 1 if 15 > 𝑇𝑡 ≥ 10. 

 𝑀𝐴𝐸 =
1

𝑁𝑡𝑒𝑠𝑡
 ∑ |�̂�𝑡 − 𝑆𝑡|

𝑁𝑡𝑒𝑠𝑡

𝑡=1

 (11)  

 𝑅2 =
(∑ (𝑦𝑡 − 𝑦)𝑁𝑡𝑒𝑠𝑡

𝑡=1
(�̂�𝑡 − �̂̅�))

2

∑ (𝑦𝑡 − 𝑦)2 ∑ (�̂�𝑡 − �̂̅�)
2𝑁𝑡𝑒𝑠𝑡

𝑡=1
𝑁𝑡𝑒𝑠𝑡
𝑡=1

 (12)  

 

The dimension parameters p for the autoregressive model 

is set to 1. To convert into stationary data, we apply difference 

conversion and the neglog transformation to the sensible 

temperature. For the linear regression after AR model in  

Pattern 4 (indicated in Table 1), we select 9 variables: 𝑆𝑡, Ht, 

Wt, TRFt , TSRt, 𝐷𝑉𝑡
1 , 𝐷𝑉𝑡

2 , 𝐷𝑉𝑡
3 , 𝐷𝑉𝑡

4. 

 

5.2.2 Results and Considerations 
 

Table 2. Relationship between parameter p and 

evaluation indices (MAE and R2) 

Pattern MAE 𝑅2 

1 3.532 0.779 

2 4.033 0.706 

3 3.950 0.714 

4 3.455 0.786 

 
Table 2 shows the result of each prediction pattern. By 

comparison between Pattern 1 and Pattern 2, it turns out that 

applying the autoregressive model to estimated value leads to 

deterioration of performance. Moreover, the weather elements  

may affect the sensible temperature of the next day directly by 

comparison with Pattern 2 and 3. Besides, utilizing the 

weather data of the same day lead to improvement of the 

prediction performance (by comparison with Pattern 2 and 4). 

Nevertheless, in this experiment, the weather data of the same 

day 𝒘𝑡
𝑓

  is equal to 𝒘𝑡  . So, for more strict analysis, it is  

desirable to conduct an experiment with actual forecasted 

value. 

Table 3. Parameter p and MAE 

p MAE 

Pattern 2 Pattern 3 Pattern 4 

1 4.0332 3.9469 3.4553 

2 4.0061 3.9050 3.4431 

3 4.0024 3.9040 3.4464 

4 4.0322 3.9179 3.4547 

5 4.0282 3.9200 3.4474 

6 4.0133 3.9339 3.4508 

7 4.0359 3.9353 3.4647 

 

Figure 9: St and Tt per month 



Table 3 is the result of performance of each value of the 

dimension parameter p of the AR model. Here, note that the 

result of Pattern 4 in Table 3 is obtained by using the result of 

Pattern 2. It shows that the autoregressive model performs best 

in case of p = 2 or 3 for prediction of the sensible temperature. 

Namely, the weather data from three days ago to the previous 

day may affect the sensible temperature of the predicted day 

(Pattern 2 and 3). In addition, the weather data of the past two 

days and that of predicted day mainly affect the sensible 

temperature of the predicted day (Pattern 4). 

 

5.2.3 Abstracting the Influential Factors 

 
In order to reveal factors which are especially influential 

and how it affects, we indicate the partial coefficients of 

Pattern 4 (best performance pattern). 

 

Table 4. Standardized partial regression coefficients   

of Pattern 4 

 

Table 4 shows that 𝑆𝑡, Relative Humidity H and Total 

Solar Radiation TSR are effective factors from the largeness of 

its absolute value. In addition, the fact that the coefficient of 

Wind-speed is negative value and that of Relative Humidity is 

positive value could indicate the consistency with the facts 

revealed in previous s tudies. 

In a previous study in Japan, it is well known that 1[m/s ] 

down of Wind-speed leads to 1[ ℃ ] down of the sensible 

temperature (Kamiyama, 1961). Missenard suggested that the 

relative humidity rises the sensible temperature in case that the 

temperature is 10 or more. The validity of the degree of effect 

of each element should be considered more. 

 

6. Conclusion and Future Works 

 

In this study, we proposed the method of quantifying the 

sensible temperature and discuss its validity. In addition, we 

try to predict the sensible temperature by using existing  

prediction methods. From now on, we should verify the 

validity of the sensible temperature through experiments of 

demand forecasting with sensible temperature data. Besides, it  

is necessary to take account of differences between regions and 

past values of weather data.  
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