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Abstract. The public bike sharing systems might be the most popular applications of shared economy in 

transportation nowadays. The convenience of such a system depends on availability of bikes and empty racks. 

One of the major challenges in operating a bike sharing system is to reposition bikes between rental sites to keep 

good bike inventory in each station at any time. To this end, most systems hire trucks to load bikes from stations 

of fewer empty racks to stations of fewer bikes. We have analyzed such a common-practiced repositioning scheme 

and will show its ineffectiveness. To provide a repositioning strategy that provides better service, we proposed a 

crowdsourced repositioning scheme. In particular, we first analyze the historical rental data by random forest 

algorithm to identify important factors towards demand forecasting. Then, by setting time tags for every 30mins  

as a period, we propose a minimum cost network flow model to calculate optimal voluntary rider flows for each 

period, based on the current bike inventory adjusted by forecasted demands. Assuming some of the voluntary 

riders do follow our instructions to ride bikes from specific origins to destinations, the repositioning operations 

can be processed with much better effectiveness than conventional trucks . 
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1. INTRODUCTION 
 

The recent boom in the sharing economy has led to new 

business and changed how people live in several ways. For 

example, the public bike systems in many metropolitan areas 

have help people to have more convenient access to the public 

transportation system such as MRTs, trains, or even buses. 

Although the business model of bike sharing systems are still 

arguable in making profits, by July 2016, more than 1000 cities 

worldwide have installed bike sharing systems, and 

approximately more than 1.3 million public bikes and pedelecs 

(i.e., pedal electric cycle) are in use. Indeed, a bike sharing 

system is a perfect means to serve for the first and last mile 

connection to public transportation systems. By deploying the 

rental sites in a suitable density (e.g., each site is within 300m-

500m range to another site), one can easily rent a bike from a 

site nearby, ride and return it to another site to take MRT, exit  

the MRT station and ride another bike to a site closer to his/her 

destination.  

The success to the bike sharing systems depends on the 

qualities of service in the following aspects: (1) ease to access 

a rental site, and (2) ease to take or return a bike. The first  

aspect is a long term strategic level network design decision, 

where the locations and density of rental sites should be 

carefully determined to provide easy accessibility to the users 

and good connection to the public transportation systems. On 

the other hand, the second aspect contains series of short term 

tactical or operational level decisions, where appropriate sizes 

of bike fleet should be deployed in different time. To this end, 

the system managers have to reposition bikes between sites to 

meet the expected bike rental or return demands . This contains 

several challenging tasks: (1) a good prediction to these 

demands, i.e., the timing and number of bikes to be taken or 

returned by customers at each rental site; (2) an optimal bike 

inventory in each site at any time; and (3) how to effectively  

reposition bikes to meet the optimal inventory levels in (2). 

Note that the failure to reposition these bikes would result in  

shortages in bikes or empty racks, and could not meet the 



 

 

demands to take or return bikes whenever necessary, which  

would damage the service qualities, discourage the use of such 

systems.  

 

 
Figure 1: A repositioning truck in YouBike (the bike sharing 

system in Taipei city) 

 

To the best of our knowledge, most current bike sharing 

systems hire trucks to reposition bikes . These trucks (see 

Figure 1) are usually of small or medium size for easy parking  

and moving in metropolitan area, and can carry around up to 

20 bikes. To load a bike to the truck a staff first checks out a 

bike from a rack, and then move it to the truck. According to 

our survey, loading or unloading a bike at least takes 30 secs. 

A truck may take around 15 min to finish at most 30 

loading/unloading tasks in each rental site in each stay. Driving  

to another site may take about 15 min on average. As a result, 

one truck may conduct 30*2=60 loading/unloading operations 

per hour. Assuming there are N trucks, and each truck works  

for 18hr (e.g., 06:00 to 24:00) without rest, we can then 

estimate the upper bound on the number of loading/unloading 

operations within one day to be 60*N*18=1080N .  

Taking the 2014 rental data of YouBike for example, there 

are around 200 rental sites, N=10 trucks, and there are about 

5000 bikes in total. Each truck can visit 2*18=36 sites, and at 

most a site is visited by 360/200=1.8 trucks on average a day. 

In other words, at any moment, only 10/200=5% sites can be 

served by trucks.  

In addition, 1080*10/2=5400 bikes are repositioned in 

one day, since each bike repositioning involves one loading 

and one unloading process, respectively. Note that YouBike in  

2014 has around 40000 daily rentals  on average, which means 

the effects of the 5400 repositioned bikes can be canceled out 

by 5400/40000=13.5% (around 1/8) users. 

All of the above effectiveness analysis for the reposition 

trucks indicates that it is very ineffective to reposition bikes by 

trucks. The only way to improve the effectiveness is to increase 

the number of trucks, yet this would cause more air pollution 

and traffic jams and contradict the very underlying philosophy 

of bike sharing systems—to reduce the use of fueled vehicles 

and carbon emission. To improve the repositioning 

effectiveness without more repositioning trucks , here we 

propose a novel crowdsourced repositioning scheme to 

reposition bikes with less efforts , air pollution, and costs. Even 

better, our proposed scheme may in fact strengthen the loyalty 

of users to the system. 

In particular, we first analyze the historical rental data, 

design visualization tools to help system managers understand 

the trends of rental. Based on these data, we first solve an 

integer program (Ideal Inventory Model, IIM) that seeks an 

optimal bike inventory level for each station in each time 

period (e.g. every 30 min), assuming we can always reposition 

bikes whenever necessary. To predict inventory change in near 

future, we first use the random forest algorithm to identify  

important factors to the rental trends, and then use them to give 

better rental prediction within next time period. With more 

accurate prediction in the inventory trends and target inventory 

levels for each site at each time period, we formulate a linear 

program called Voluntary Rider Flow Model (VRFM), which  

is a minimum cost flow problem to be exact, to calculate 

optimal bike flows for inviting voluntary riders to meet the 

target bike inventory levels for the incoming time period.  

To seek voluntary riders, we suggest to enhance the 

membership database by adding records of voluntary rides into 

ordinary historical riding records for each member. To the best 

of our knowledge, most bike sharing systems even do not store 

riding historical data for each member. The bike sharing 

systems should also provide easy access to check out the riding 

records for each member by websites or applications (APPs) in  

smart phones. By using our proposed scheme, the system can 

design some kind of bonus points to encourage members for 

more frequent rides, and more bonus points for inviting  

voluntary riders to take repositioning missions . For example, 

the system can announce or spread out the voluntary missions 

on the website or APPs, completing each mission can earn 

some bonus points, which can be cashed out for extra free 

riding time or gifts. By encouraging volunteer riders to take 

missions for cashing out bonus, shared vehicles can be 

simultaneously repositioned at many rental sites . This 

crowdsourced repositioning strategy would bring at least 3 

advantages: (1) prompt responses to reposition bikes in more 

sites simultaneously, compared with conventional trucks; (2) 

cost savings in hiring trucks and staffs which in turn reduces 

the use of fueled vehicles and traffic jams; and (3) increasing 

the loyalty of members  and improving the relationships with  

other companies that provide services for member to cash out 

their bonus points. To the best of our knowledge, similar bonus 

schemes may only have appeared in very few occasions such 

as encouraging uphill riders in hilly areas , but have not been 

applied for general-purpose usage. This makes our 

contribution more significant, since we may be the first to 

determine voluntary repositioning OD pairs by theoretical 

mathematical models and algorithms, rather than intuitive 

marketing techniques.  

This paper is organized as follows: Section 1 introduces  

backgrounds, drawbacks of current repositioning scheme, and 

advantages of our crowdsourced repositioning scheme; 



 

 

Section 2 reviews related literature; Section 3 explains the 

mechanism of IIM for calculating the ideal optimal bike 

inventory and details and effects of our crowdsourced 

repositioning scheme VRFM; Section 4 presents the data 

analysis and computational tests on our proposed models; 

Section 5 concludes the paper and suggests topics for future 

research.  

 

2. LITERATURE REVIEW   
 

Here we focus more on the literature of data analysis and 

repositioning strategies.  

Gebhart and Noland (2014) investigated how the weather 

conditions affect the bike usage trend for the bike sharing 

system at Washington DC, USA. They found that riders under 

rain are usually registered users, or those who with private 

bikes, but not the nonregistered users. Barga et al. (2014) 

presented an interactive visualization system to display the 

rental data of Boston, Washington DC, and Chicago in  

different time, location. Their system can also present the 

busiest sites at any time. O’brien et al. (2014) list and compare 

the locations of rental sites, rental data, and weather conditions 

for 30 bike sharing systems in different time. Sarkar et al. 

(2015) implemented a similar system but displayed the usage 

by percentage and grouped rental sites by the usage. 

Vogel et al. (2011a,b) calculated the locations for 

installing bikes and racks by mining the rental data. Montoliu 

(2012) proposed an algorithm to identify the trend of inventory 

changes based on the rental data. Froehlich et al. (2009) 

investigated the demands change in weekday/weekend, the 

relation between the rental frequencies and locations, and 

important factors affecting the rentals. They also tested four 

methods to predict the future demands of next time period 

based on the current inventory with errors up to 15%. 

Kaltenbrunner et al. (2010) proposed a prediction model based 

on Auto-Regressive Moving Average (ARMA). Yoon et al. 

(2012) also developed an ARMA based model that further 

considered the seasonal and spatial factors  and claimed his 

model is better than previous ARMA and Bayesian models  for 

the bike sharing system in Dublin. 

Rixey et al. (2013) analyzed 3 bike sharing systems in 

USA, listed factors used for prediction model by multivariate 

regression analysis. Cagliero et al. (2016) claimed that Bayes 

Classifiers can do better prediction than the regression-type 

algorithms for the Citi Bike at New York, and proposed the 

STation Occupancy Predictor to predict short-term future bike 

inventories. Recently, Yang et al. (2016) analyzed the rental 

data of the bike sharing system at Hangzhou, China, and 

proposed a prediction model for bike rentals by the Random 

Forest algorithm (RF), which they claimed to have better 

prediction performance than several other algorithms. They 

use the bike rental model to estimate the bike returns, similar 

to the simulation models by Wang and Wu (2016). Here in this 

paper we will also employ RF to predict incoming demands. 

The static repositioning problem (Chemla, Meunier and 

Calvo, 2009; Raviv, Tzur and Forma, 2013; and Benchimol, et 

al., 2011) investigate how to move bikes at night when there 

are very few or no demands  to meet the target initial bike 

inventory for each site. On the other hand, the dynamic 

repositioning problem (Chang, 2010; Hung, 2011; Contardo et 

al., 2012; and Vogel et al., 2014) calculates the routes for 

repositioning trucks and number of bikes to be loaded or 

unloaded in each site. The integer programming models for 

solving these repositioning problems usually could not deal 

with cases of more than 60 rental sites, due to the complexity  

issues. In addition, several heuristics (Hung, 2011; Contardo et 

al., 2012; and Vogel et al., 2014) have also been proposed but 

still have bad performance. Kaspi et al. (2014) gave a 

reservation scheme that allows users to reserve a bike/car and 

an empty rack/spot for public bike and car sharing systems. By 

using simulation, they concluded introducing the reservation 

scheme could reduce the waiting time for renting/returning a 

shared vehicle, as expected. 

Liao (2012) gave the first crowdsourced repositioning 

model for dynamic repositioning. Assuming the OD demands 

for each site and each time period (e.g., 30 min) have been 

estimated, Liao (2012) added possible voluntary riding OD 

arcs for each site in each period, and solved a mixed integer 

program to identify optimal voluntary riding assignments for 

each site in each period. This model could not deal with real-

time voluntary repositioning, since it only uses historical 

average demands as inputs. In this paper, we have resolved this 

difficulty. Based on the work of Liao (2012), we propose an 

ideal inventory model (IIM) that calculates the ideal inventory 

for each site in the beginning of each time period, and a real-

time Voluntary Rider Flow Model (VRFM) that seeks the 

optimal voluntary riders in each time period. 

 

3. MATHEMATICAL MODELS  
 

3.1 The Ideal Inventory Model (IIM) 
 

The optimal bike inventory for each rental site may vary 

at any time, depending on the dynamic rental demands. To 

simplify the problem, we use 30 min as the length of a time 

period (e.g., 06:00 - 06:30 - 01:00 - 01:30 -…- 23:30 - 24:00), 

and assume the optimal bike inventory remain the same for any 

time within the same time period. Assume there are N stations, 

B   bikes, T  time periods, 
iU  empty bikes for site i . Let  

A  denote the set of possible OD pairs. For each site i  in 

period t  , let t

ib   and t

ir   represent number of bikes to be 

taken and returned, respectively. Assume there are at most  
tR  voluntary riders available in period t , and each voluntary 

rider who departs at period t  would spend ij  time periods 

to reposition a bike from site i  to j .  

We would like to determine the following variables: in 



 

 

each time period t  , t

ijx   represents the optimal voluntary 

rider flows for each OD pair ( , )i j A ; for each site i , t

iI  

denotes its optimal bike inventory level, t

iU  is the optimal 

number of bikes exceeding the capacity (total number of racks), 

and t

iL   is the optimal number of bike shortages. Let    

represent a very small number, the ideal bike inventory model 

(IIM) can be formulated as follows: 

 
1 1 1 ( , )

min              (IIM)
T N Tt t t

i i ijt i t i j A
U L x

   
       

1 1

( , ) ( , )

                                                    1,..., ; 1,...,      (1)

jitt t t t t t t

i i i i ij ji i ii j A j i A
I I b r x x U L

t T i N

 

 
      

  

 
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1
                                             (2)

N

ii
I B


  

( , )
    1,...,                  (3)t t

iji j A
x R t T


    

0 , 0,  0 1,..., ; 1,...,   (4)t t t

i i i iI U U L t T i N          

0    ( , ) ,                   (5)t

ij ijx i j A t    

0     1,..., ;  ( , )       (6)t

ijx t T i j A     

The objective function minimizes the mismatched  

demands (i.e., the surplus or shortage in bikes) as well as 

unnecessary voluntary riders. Constraints (1) define the flow 

balance relation for bike inventory in the end of each period 

and each site. Constraints (2) conserve the total number of 

bikes, whereas constraints (3) conserve the total number of 

voluntary riders in each period. Constraints (4)(5)(6) define the 

ranges of variables.  

If there are unlimited voluntary riders available at any 

time anywhere, then we should always meet the target optimal 

inventory (i.e., t

iI  ) anytime anywhere. We call this target 

inventory to be the “ideal” inventory since such an inventory 

would serve the most rental demands, regardless the 

repositioning costs. Thus we will use this ideal inventory as a 

target inventory value to achieve for each site and period in the 

real-time crowdsourced repositioning model VRFM. 

 

3.2 The Voluntary Rider Flow Model (VRFM) 
 

Since IIM assumes the rental data are all known and fixed , 

we propose the voluntary rider flow model (VRFM), which  

can be viewed as a partial version of IIM decomposed by 

periods, to deal with the dynamic real-time rental demand. 

In particular, in the beginning of period t , for each site 

i , let t

ib  and t

ir  represent the predicted (e.g., by random 

forest algorithm) number of bikes to be taken and returned, 

respectively; 1t

iI   denote the real-time current bike inventory, 

and t

iI  is the target optimal bike inventory calculated from 

IIM; 
t

jix


 is the expected number of actual voluntary riders  

who are currently on the way from site j  and expected to 

arrive at site i  in this period. Other parameters are the same 

as IIM.  

We would like to determine 
t

ijx , the optimal voluntary 

rider flows for each OD pair ( , )i j A , and 
t

iI , the planned 

ending inventory in current period t , so that t

iI  is as close 

to t

iI  as possible with minimum efforts in repositioning. In 

the beginning of period t , we can form the following linear 

program VRFMt: 

1 ( , )

1

( , ) ( , )

min                               (VRFM )

 1,...,  (7)

N t t t t
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t t t t t t
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0   1,...,                             (9)t

i iI U i N     

0      ( , )                              (10)t

ijx i j A    

The linear program VRFM t in fact corresponds to a 

minimum cost flow problem as follows: Draw N nodes in the 

left, with index , 1,...,t

Li i N , representing each site at current 

time t   ; draw another N nodes in the right, with index 

, 1,...,t

Ri i N , representing each site in the next period. For 

each left node , 1,...,t

Li i N  , we associate it with value 
1

( , )

t t t t

i i i jij i A
I b r x




    to mean its expected inventory 

before repositioning. For each right node , 1,...,t

Ri i N , we 

associate it with value t

iI  to mean its target optimal inventory 

after repositioning. Then, for each possible OD pair ( , )i j A , 

we construct an arc ( , )t t

L Ri j  as an repositioning arc. We also 

construct N inventory arcs ( , ),  1,...,t t

L Ri i i N .  

Figure 2 illustrates a small VRFM example where there 

are 4 rental sites with expected bike inventory vector as (3, 10, 

1, 0), and the target optimal inventory vector as (5, 6, 2, 4), 

respectively. Note that we know there will be shortage of 3 

bikes, since (3+10+1+0)-(5+6+2+4)=-3. Suppose we can only 

find voluntary riders to move from site 1 to 2, 1 to 3, 2 to 4, 3 

to 1, and 4 to 1, respectively. Figure 2(a) illustrates the original 

graph, which then can be converted to be Figure 2(b) by the 

following steps: 

1. Add a new dummy node S as a source (with supply  

1
( )

N t t

i ii
I I


 ) or a sink (with demand 

1
( )

N t t

i ii
I I


 ). 

2. Add 2N dummy arcs ( , )t

Rj S  and ( , )t

RS j , 1,...,j N .  

3. Associate each left node t

Li   with a supply 
t

iI  , each 

right node t

Ri  with a supply t

iI  

4. Associate each dummy arc with a cost 1, each inventory 

arc with cost 0; and each repositioning arc with cost  . 

 

  
(a) (b) 

Figure 2: An illustrative VRFM example  



 

 

Now we can easily see the transformed graph is a 

minimum cost flow problem, where flows are sent from supply 

nodes (including the left nodes or S) to demand nodes 

(including the right nodes or S) via uncapacitated arcs with  

minimum total costs. The optimal solution to this min imum 

cost flow problem gives an optimal repositioning strategy. 

Note that the above network transformation ignores 

constraints (8), the availability of voluntary riders. If, the 

optimal solution to the minimum cost flow problem requires to 

hire more than tR  voluntary riders, then we can randomly  

remove the extra riders from the solution without affecting the 

optimality. Take Figure 2 for an example, an optimal solution 

may reposition 4 bikes from 2 to 4, leaving 2 bikes and 1 bike 

shortage in site 1 and 3, respectively. However, if we can at 

most hire 3 voluntary riders, then we may simply lay off 1 rider 

from previous arrangement.  

 

4. DATA ANALYSIS AND TESTINGS  
 

4.1 Random Forest and Inputs for VRFM 
 

Any real-time repositioning decision requires accurate 

prediction on the bike rentals in the near future. To this end, we 

use the random forest algorithm (Breiman, 2001) used in  

machine learning to construct multiple decision trees for 

classification of important features and regression on the rental 

demands. In our testings, the random forest algorithm has  

better prediction errors than linear regression and ARIMA.  

Using the 10-month historical YouBike rental data in 

2014 as the dataset, we have found that the classification errors 

converges after constructing more than 150 decision trees. We 

decide to construct 500 trees since it has almost the same errors 

as 3000 trees but consumes much shorter time. Based on our 

testings, we have selected 7 important features that affect the 

prediction: holiday or not, weekday or not, day (i.e., 

Monday, …, Sunday), current hour, number of checking out 

and returns in previous period, temperature, and rainfall. For 

each site, we construct its own random forest, which can output 

a predicted value on the number of checking outs  ( t

ib ) and 

returns ( t

ir ) with the given 7 parameters.  

To solve for VRFMt, one still needs to estimate 
t

jix


, the 

expected number of actual voluntary riders who are currently 

on the way from site j and expected to arrive at site i  in this 

period. This can be estimated from the historical data. For 

example, if on average it takes 1.6 periods to move from site 

j  to i , and there are 2 and 3 riders have traveled for 0.3 and 

0.9 periods at present time, then we would expect 3 riders to 

arrive in this period, while the other 2 riders will arrive in next  

period.  

Therefore, with current bike inventory 1t

iI   , target 

optimal inventory t

iI , predicted number of checking outs t

ib  

and returns t

ir  , the expected number of actual voluntary 

riders 
t

jix


 , and the estimated number of total available 

voluntary riders tR  , we can solve the VRFM t for optimal 

voluntary rider flows t

ijx  that we try to hire for this period. 

Then, after one period, we repeat the same procedures, until 

the end of a day.  

 

4.2 Simulations on Repositioning Strategies 
 

In order to test the effectiveness of our crowdsourced 

repositioning strategy, we use two simulation settings: (1) 

sampled real daily data (e.g. the rental data of 2014.03.05 or 

2014.03.11), and (2) sampling from a set of mixed real (e.g. if 

we mix the actual 85 sunny weekdays in the period of 2014.01-

05, then each rental record has 1/85 probability to be selected; 

We repeat these sampling for an entire day for 100 times). The 

first simulation uses the Random Forest algorithm to predict 

the rental demands, since the environment info such as 

temperature or rainfall are also available as inputs. 

Nevertheless, the second simulation can only use the historical 

average statistics (e.g., average checking outs/ins in each site 

and period) for rental demand prediction, since the random 

sampling would violate the data consistency for using the 

random forest algorithm (e.g., previous rental records may  

correspond to different dates, whose environment data might  

be very different, and thus not applicable for the Random 

Forest algorithm.). We use the optimal initial and ending bike 

inventory calculated by IIM in each period t for setting the 

initial and target optimal bike inventory in each period for 

simulation. 

To simulate the crowdsourced repositioning strategy, we 

first assume we can always find voluntary riders whenever 

necessary, which gives us an estimate for 
tR , the maximu m 

number of available voluntary riders in each period t. In our 

testings, we find by inviting 
1

4458
T t

t
R


  daily voluntary 

riders the simulation would satisfy 94%~98% daily demands.  

Besides the crowdsourced repositioning strategy, we also 

implement a truck repositioning strategy for comparison. To 

this end, we first conduct a K-means clustering algorithm to 

partition the rental sites into disjoint service zones, so that each 

service zone has similar amount of total net rental data (i.e. the 

difference between the total checking outs and returns) and the 

rental sites in one service zone are in close vicinity to each 

other. The repositioning tasks within one service zone are 

conducted by a unique repositioning truck. We also assign 

repositioning missions every 30 min, based on the real 

practices of YouBike (i.e., 10-15 min to move to another site 

in the same service zone, 10-15 min to load/unload bikes). We 

assume a truck can carry at most 20 bikes, and every 30 min it  

will select a site that requires the most loading or unloading 

operations. In particular, for a truck currently carrying 3 bikes 

at a site, there are 4 other sites in the same service zone that 

respectively need +5, -2, +10, -14 bikes (“+” means a site 

needs to add bikes, whereas “-” means a site needs to remove 

bikes), then the truck would go to the 4th site to move 14 bikes 



 

 

to the truck. Similar process is conducted every 30 min. 

 

 
Figure 3: Comparison on the effectiveness of prediction 

for crowdsourced repositioning  

 

 
Figure 4: Comparison on the effectiveness of 

repositioning by crowdsourcing and different number of 

trucks  

 

 
Figure 5: Comparison on the effectiveness of different 

repositioning strategies in 100 simulated daily rentals   

Using the first simulation setting of 18 real daily rentals, 

Figure 3 shows that the effectiveness of prediction by the 

Random Forest algorithm is around 0.8%. Figure 4 shows that 

the crowdsourced repositioning strategy has improved up to 1-

3.5% of unmet demands than repositioning by 10 to 25 trucks 

for the 18 actual daily rental data. These results indicate the 

more accurate prediction (e.g., by the Random Forest 

algorithm) does improve the service quality. In addition, the 

crowdsourcing repositioning provides much better service than 

trucks. Finally, Figure 5 again certificates the effectiveness of 

the crowdsourced repositioning is up to about 2.8% better on 

average than the truck repositioning. 

 

5. CONCLUSIONS  
 

In order to reduce the unmet rental demands in the bike 

sharing systems, we propose a novel crowdsourced 

repositioning scheme and show that it is more effective than 

current truck repositioning strategy by simulations. Although 

similar idea has been mentioned for years, our work is arguably 

the first one to give detailed mathematical models and 

numerical experiments on how to implement it, to the best of 

our knowledge. 

We first point out the drawbacks of truck repositioning, 

then propose a mathematical programming model (IIM) to 

calculate the ideal optimal bike inventory for each site in each 

time period, assuming unlimited availability of voluntary 

riders. The calculated ideal bike inventories  for each time 

period t are then used as a target value to reach in our second 

simplified linear program model (VRFMt), which we have 

shown to be a minimum cost flow problem. Given the current 

bike inventory, estimated bikes to be checked out and returned, 

estimated voluntary repositioning to be completed, and 

estimated maximum number of available voluntary riders in  

the incoming period, one can solve VRFM t for an optimal 

number of voluntary riders for specific OD pairs (i.e. how 

many voluntary riders to assign for repositioning bikes from 

which origin site to which destination site). To have more 

accurate in the estimated rental demands, we have used the 

Random Forest algorithm to identify important factors and 

parameters. To validate the effectiveness improvement in  

service qualities, we have conducted two simulation  

experiments using the 10-month real rental data collected from 

YouBike. The results indicate that more accurate prediction 

could improve the service quality up to 0.8%, and our 

crowdsourced repositioning strategy can improve up to 3.5% 

and 2.8% of service quality than the truck repositioning 

strategy in our two simulation experiments. 

For future research, we suggest to investigate more 

accurate prediction models on rental demands, as well as 

marketing strategies in encouraging the voluntary riders. 
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