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Abstract.  The aim of this paper is to detect the asymmetric multi-fractality in stock ind ices of G-2 countries 

based on the asymmetric multi-fractal detrended fluctuation analysis (A-MFDFA). A-MFDFA is proposed to 

measure the scaling behavior of time series ; it defines the state of mono- and mult i-fractality which indicate  

the efficient and inefficient market, respectively. In addition to the conventional return-based criteria for 

market  trend, we introduce the index-based model so that the stylized facts of asymmetric multi-fractality can  

be revealed. Based on two models, we provide the evidences of asymmetric multi-fractality and time-varying  

efficiency of each stock market with respect to different time window. 
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1. INTRODUCTION 
 

In previous literatures, the multi-fractal analysis has 

been applied to investigate the various stylized facts of the 

financial market including market inefficiency (Cajuerio 

and Tabak, 2004;  Wang et al., 2010), risk evaluation (Lee et 

al., 2016), and crash prediction (Grech and Mazur, 2004). 

Specifically, the mult i-fractal detrended fluctuation analysis 

(MF-DFA) is a typical approach to measure the long-range 

autocorrelations and mult i-fractality of a time-series 

(Kantelhardt et al., 2002), a generalization of the detrended 

fluctuation analysis (DFA) (Peng et al., 1994). Many 

studies have analyzed the multi-fractal behaviors of the 

stock markets (Greene and Fielitz, 1977; Lee et al., 2006; 

Sun et al., 2001), but only few of them focus on the 

asymmetric multi-fractal scaling behavior.  

The stock market is composed of two asymmetric 

market  trends, known as the bullish and bearish markets, 

and they should be treated differently in analyzing the 

multi-fractal scaling behavior and asymmetric correlat ion. 

In general, the presence of asymmetric correlat ion can 

affect the portfolio diversification and risk management  

(Ang and Chen, 2002). Alvarez-Ramirez et al. (2009) 

introduce the asymmetric DFA (A-DFA). In extension to A-

DFA, Cao et al. (2013) propose the asymmetric mult i-

fractal detrended fluctuation analysis (A-MFDFA) method 

to examine the asymmetric multi-fractal scaling behaviors 

of uptrends and downtrends. Interestingly, Cao et al. (2013) 
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demonstrate the distinct scaling properties in two  different 

market  trends where the up- and down-trends are 

distinguished based on the linear regression of return 

dynamics. In  addition to the return dynamics, we suggest to 

include the index dynamics as a new criterion for 

separating the market trends, which is more intuit ive 

measure of ups and downs. 

In this paper, we employ A-MFDFA method for 

analyzing the stock indices of the United States and China 

(a.k.a. G-2 countries) so that the existence of asymmetric 

multi-fractal scaling behavior can be observed. Specifically, 

A-MFDFA is utilized into two models in accordance with 

the separation criterion o f asymmetric trends: one is return-

based and the other is index-based model. Based on two 

models, we discuss the empirical difference of two models, 

features of scaling behavior, and the degree of market 

efficiency in the G-2 stock indices. Furthermore, we 

investigate the scaling asymmetries and the time-varying 

feature of asymmetric multi-fractality. 

 

 

2. A-MFDFA METHODOLOGY 
 

Let {𝑥(𝑡)} be the time series 𝑡 = 1, 2,… , 𝑁  where 

𝑁 denotes the length of the series, then A-MFDFA can be 

defined in the following steps: 

 

Step 1: Construct the profile. 

 

𝑦( 𝑗) = ∑(𝑥(𝑡) − 𝑥̅),

𝑗

𝑡=1

  𝑗 = 1, 2, … , 𝑁 (1) 

 

where 𝑥̅ =
1

𝑁
∑ 𝑥(𝑡)𝑁

𝑡=1 . 

 

Step 2: Divide time-series to non-overlapping sub-time 

The time-series and its profile are d ivided into 𝑁𝑛 =

𝑖𝑛𝑡(𝑁/𝑛) non-overlapping sub-time series of equal length 

𝑛. The length 𝑁 may not be a multiple of t ime-scale 𝑛, so 

a short part of the profile will remain in most cases. We 

repeat this procedure from the other end of the profile, 

which leads to obtain 2𝑁𝑛 sub-time series. Suppose 𝑆𝑗 =

{𝑠𝑗,𝑘, 𝑘 = 1,2, … , 𝑛} be the 𝑗 th sub-time series of length 𝑛 

and 𝑌𝑗 = {𝑦𝑗,𝑘, 𝑘 = 1,2, … , 𝑛} be the profile t ime series in 𝑗th 

time interval for 𝑗 = 1,2, . . . ,2𝑁𝑛. Then, we have 

 

𝑠𝑗,𝑘 = 𝑥((𝑗 − 1)𝑛 + 𝑘),      𝑦𝑗,𝑘 = 𝑦((𝑗 − 1)𝑛 + 𝑘)  (2) 

 

for 𝑗 =  1, 2, . . . , 𝑁𝑛 and 

 

𝑠𝑗,𝑘 = 𝑥(𝑁 − (𝑗 − 𝑁𝑛)𝑛 + 𝑘) 

(3) 
𝑦𝑗,𝑘 = 𝑦(𝑁 − (𝑗 − 𝑁𝑛)𝑛 + 𝑘) 

 

for 𝑗 =  𝑁𝑛 + 1, . . . , 2𝑁𝑛 . Note that 5 ≤ 𝑛 ≤ 𝑁/6  is 

selected. 

 

Step 3: Construct the fluctuation function 

For each 𝑆𝑗  and 𝑌𝑗 , we compute the local least-

squares fits 𝐿𝑆𝑗
(𝑘) = 𝑎𝑠𝑗

+ 𝑏𝑠𝑗
𝑘  and 𝐿𝑌𝑗

(𝑘) = 𝑎𝑌𝑗
+ 𝑏𝑌𝑗

𝑘 , 

where 𝑘 presents the horizontal coordinate. The slope of 

𝐿𝑆𝑗
(𝑘), 𝑏𝑆𝑗

, is used to discriminate whether the trend of 𝑆𝑗 

is positive or negative. 𝐿𝑌𝑗
 is used to detrend the integrated 

time series 𝑌𝑗. So, we define the fluctuation functions  such 

that, 

 

𝐹𝑗(𝑛) =
1

𝑛
∑ (𝑦𝑗,𝑘 − 𝐿𝑌𝑗

(𝑘))
2

𝑛

𝑘=1

 (4) 

 

for 𝑗 =  1, 2, . . . , 2𝑁𝑛. 

 

Step 4-1: Divide trend using return dynamics 

Suppose the time series 𝑥(𝑡) has piecewise positive 

and negative linear trends. Then, the fluctuation functions 

are considered to assess asymmetric cross -correlation 

scaling properties based on the sign of the slope, 𝑏𝑆𝑗
. It 

defines that 𝑏𝑆𝑗
> 0 (𝑏𝑆𝑗

< 0) is true if the time series 𝑥(𝑡) 

has a positive (negative) trend in  the 𝑆𝑗. This model is a 

conventional approach called Return-based A-MFDFA. 

 

Step 4-2: Divide trend using index dynamics 

Let 𝐼(𝑡) = 𝐼(𝑡 − 1) 𝑒𝑥𝑝(𝑥(𝑡))  for 𝑡 = 1,2, … , 𝑁 , where 

𝐼(0) =  1, then {𝐼(𝑡)} is the indexing proxy  of return t ime 

series. Similar to Step 2, suppose 𝐺𝑗 = {𝑔𝑗,𝑘, 𝑘 = 1, 2, … , 𝑛} 

be the 𝑗th sub-time series of length 𝑛. Then, we have  

 

𝑔𝑗,𝑘 = 𝐼((𝑗 − 1)𝑛 + 𝑘),          𝑗 = 1,2, … , 𝑁n 

(5) 

𝑔𝑗,𝑘 = 𝐼(𝑁 − (𝑗 − 𝑁𝑛)𝑛 + 𝑘)), 𝑗 = 𝑁𝑛 + 1, … ,2𝑁𝑛 

 

for 𝑗 =  𝑁𝑛 + 1, … , 2𝑁𝑛 . Note that 5 ≤ 𝑛 ≤ 𝑁/6  is 

selected. 

 

Now, we can compute the local least-squares fits 

𝐿𝐺𝑗
(𝑘) = 𝑎𝐺𝑗

+ 𝑏𝐺𝑗
𝑘 , where 𝑘  presents the horizontal 

coordinate. The slope of 𝐿𝐺𝑗
(𝑘) , 𝑏𝐺𝑗

, is used to 

discriminate whether the trend of 𝐺𝑗 is positive or negative. 

It defines that 𝑏𝐺𝑗
> 0 (𝑏𝐺𝑗

< 0) is true if the t ime series 

𝐼(𝑡) has a positive (negative) trend in  the 𝐺𝑗. We call this 

model as Index-based A-MFDFA. 



  

 

Step 5: Construct q-order average fluctuation functions 

Then, the directional 𝑞 -order average fluctuation 

functions of return-based model can be computed by, 

 

𝐹𝑞
+(𝑛) = (

1

𝑀+ ∑
𝑠𝑖𝑔𝑛(𝑏𝑆𝑗

) + 1

2
[𝐹𝑗(𝑛)]

𝑞

2  

2𝑁𝑛

𝑗=1

)

1

𝑞

 

(6) 

𝐹𝑞
−(𝑛) = (

1

𝑀− ∑
− [𝑠𝑖𝑔𝑛 (𝑏𝑆𝑗

) − 1]

2
[𝐹𝑗(𝑛)]

𝑞

2  

2𝑁𝑛

𝑗=1

)

1

𝑞

 

 

where 𝑀+ = ∑ [𝑠𝑖𝑔𝑛 (𝑏𝑆𝑗
) + 1] 2⁄2𝑁𝑛

𝑗=1  and 𝑀− =

∑ − [𝑠𝑖𝑔𝑛 (𝑏𝑆𝑗
) − 1] 2⁄2𝑁𝑛

𝑗=1 , which denotes the number of sub-

time series with positive and negative trends, respectively.  

 

The average fluctuation function also can be computed as, 

 

𝐹𝑞(𝑛) = (
1

2𝑁𝑛
∑[𝐹𝑗(𝑛)]

𝑞

2

2𝑁𝑛

𝑗=1

)

1

𝑞

 (7) 

 

Furthermore, the index-based average fluctuation function 

can be computed by altering 𝑏𝑆𝑗
 with 𝑏𝐺𝑗

. 

 

Step 6: Calculating the generalized Hurst exponent  

When the power-law relation exists, 𝐻(𝑞), 𝐻 +(𝑞), and 

 𝐻 −(𝑞)  denote the overall, upward, and downward scaling 

exponents, respectively. Specifically, the scaling satisfies, 

 

𝐹𝑞(𝑛) ~ 𝑛𝐻(𝑞);    Fq
+(𝑛) ~ 𝑛𝐻+(𝑞);    Fq

−(𝑛) ~ 𝑛𝐻−(𝑞)
 (8) 

 

These relations then can be changed into, 

 

log 𝐹𝑞(𝑛) = 𝐻(𝑞) log 𝑛 + log 𝐴1 

(9) log 𝐹𝑞
+(𝑛) = 𝐻 +(𝑞) log 𝑛 + log 𝐴2 

log 𝐹𝑞
−(𝑛) = 𝐻 −(𝑞) log 𝑛 + log 𝐴3 

 
𝐻(𝑞)  is the generalized Hurst exponent, which indicates 

the multi-fractal time-series if 𝐻(𝑞)  depends on 𝑞 . 

Otherwise, the time-series are mono-fractal. In  general, 

following relation exists. 

 

 > 0.5 : Persistent 

H(2) < 0.5 : Anti-persistent 

 = 0.5 : Random walk 

Analogous to 𝐻(𝑞) , the uptrend (downtrend) time-series 

are multi-fractal if the time-series shows positive (negative) 

trend and 𝐻 +(𝑞)  (𝐻 −(𝑞)) depends on 𝑞 . Otherwise, the 

uptrend (downtrend) time-series are mono-fractal.  

 
 

3. DATA 
 
This paper uses the daily closing prices of the U.S. 

(DJIA and NASDAQ) and China (SSCI and SZCI) indices. 

Note that DJIA, NASDAQ, SSCI, SZCI are abbreviations 

for Dow Jones Industrial Average Index, National 

Association of Securities Dealers Automated Quotations 

Composite Index, Shanghai Stock Exchange Composite 

Index, and the Shenzhen Component Index, respectively. 

The experimental period of time-series is considered from 

1991-01-01 to 2015-12-31 fo r most indices except SZCI 

which started to operate in 1991-04-03. Then, we t ransform 

the price-series to the logarithmic return-series, 𝑟𝑡 =

𝑙𝑜𝑔(𝑃𝑡) − 𝑙𝑜𝑔(𝑃𝑡 −1), where 𝑃𝑡  is the closing price index at  

time 𝑡. Finally, the sample sizes of NJIA, NASDAQ, SSCI, 

and SZCI are 6290, 6293, 6122 and 6013 trading dates, 

respectively. Note that the price data can be obtained from 

any open platform such as Yahoo and Google finance. 

 

 

4. RESULTS 

 

4.1 Asymmetric fluctuation functions and their 
dynamics 
 

In this section, two  models of A-MFDFA are applied 

to investigate the aspects of fluctuation functions  with 

respect to different trends. As stated in Chapter 3, the 

experiment targets are the stock indices in the U.S. and 

China. In Fig.1 to 4, the results of A-MFDFA when 𝑞 = 2 

are illustrated for each indices. Specifically, Figures on the 

left demonstrate the log2(𝐹2 (𝑛))  vs. log2 (𝑛)  result of 

return-based model, whereas Figures on the right 

demonstrate that of index-based model. Note that blue, red, 

and yellow dots represent the overall, upwards, and 

downwards, respectively. It is well-known stylized fact that 

log2 (𝐹2(𝑛))  vs. log2 (𝑛)  possesses a power-law 

dependency where the straight dotted line indicates a 

decent power-law fit. In general, the asymmetry in 

fluctuation functions is discovered within a single unit of 

time-scale where the distinctions between the values of 

uptrend and downtrend are observed through most of time-

scale. Besides, the dynamics of fluctuation functions 

exhibit the symmetric evolution in accordance with the 

time-scale increment. In addition, the newly-suggested 

approach of index-based model clearly  distinguishes the           

d 



  

 

 

Figure 1: plots of 𝐥𝐨𝐠𝟐(𝑭𝟐(𝒏)) vs . 𝐥𝐨𝐠𝟐(𝒏) for DJIA 

 

 

Figure 2: plots of 𝐥𝐨𝐠𝟐(𝑭𝟐(𝒏)) vs . 𝐥𝐨𝐠𝟐(𝒏) for NASDAQ 

 

 

Figure 3: plots of 𝐥𝐨𝐠𝟐(𝑭𝟐(𝒏)) vs . 𝐥𝐨𝐠𝟐(𝒏) for SSCI 

 

 

Figure 4: plots of 𝐥𝐨𝐠𝟐(𝑭𝟐(𝒏)) vs . 𝐥𝐨𝐠𝟐(𝒏) for SZCI 

 

straight trend of upwards and downwards pivoting on the 

overall dots, whereas the conventional approach of return-

based model shows the dots with scatter distribution 

without a straight trend. Hence, the results suggest that the 

index-based model provides more robust criterion of 

detecting the power-law scaling property. In other words, 

the index-based model performs better clustering of two 

different trends. 

Furthermore, the fluctuation functions of trends show 

the reverse order of their values between the return- and 

index-based models. In cases of DJIA and NASDAQ, the 

descending order of return-based model is upward, overall, 

and downward, whereas that of index-based model is 

downward, overall, and upward. However, SSCI and SZCI 

show the completely opposite orders of each model in 

comparison to the U.S. indices. 

 

4.2 Time-varying multi-fractality and market 
efficiency 

 

Wang et al., (2010) suggest that the degree of multi-

fractality can measure the market efficiency. Thus, the 

degree of mult i-fractality, 𝛥𝐻 = 𝑚𝑎𝑥(𝐻(𝑞)) − 𝑚𝑖𝑛(𝐻(𝑞)), 

can be a proxy  of the degree of market  efficiency. Note that 

𝛥𝐻 = 0 indicates the perfect ly efficient market. In contrast, 

the market is inefficient if 𝛥𝐻 is deviated from 0. 

Table 1 lists the values of 𝛥𝐻 in d ifferent indices for 

total period of experiment, which is equivalent to 25 years. 

Note that 𝛥𝐻 + and 𝛥𝐻 − are computed based on 𝛥𝐻 ± =

𝑚𝑎𝑥 (𝐻 ±(𝑞)) − 𝑚𝑖𝑛 (𝐻 ±(𝑞)). Based on the results , the most 

efficient market  is discovered to be NASDAQ for both 

models. Then, the efficiency is generally ordered as  DJIA, 

SZCI, and SSCI except the case of downward  trend in 

index-based model where SSCI is more efficient than SZCI. 

Hence, it can  be concluded that the U.S. indices are more 

efficient than the Chinese indices.  

Table 2 shows the result of cross-sectional multi-

fractality of each index based on 5 years of t ime window. 

The result is expected to reveal the time-vary ing property 

of multi-fractality.  

For the U.S. stock indices, 𝛥𝐻 differs with respect to 

different t ime window, which  can be exp lained by the 

macro or financial crisis periods. Note that the market is 

known to be inefficient during the crisis period. In case of 

DJIA in  return-based model, 𝛥𝐻 − is substantially  large 

during the time window of 2006-2010 where  the outbreak 

of sub-prime mortgage crisis destroyed the U.S. financial 

system. In case of NASDAQ in index-based model, 𝛥𝐻 − 

is also distinguishably large during the time windows of 

1996-2000 and 2011-2015 where the Dot-com bubble and 

European debt crisis  were presented.  

In contrast to the case of U.S. stock indices, 𝛥𝐻 of 

Chinese stock ind ices are g radually  reduced with respect to 

time.    h 



 

 

 

Table 1: 𝛥𝐻 of each time series from 1991 to 2015 

 

Trend 
DJIA NASDAQ SSCI SZCI 

Return Index Return Index Return Index Return Index 

Overall 0.1330 0.0467 0.6718 0.3754 

Upward 0.1432 0.1983 0.1193 0.1144 0.7115 0.8036 0.3972 0.2402 

Downward 0.1623 0.1682 0.0459 0.2680 0.5754 0.3261 0.3189 0.4741 

 

 

Table 2: 𝛥𝐻 of cross-sectional multi-fractality based on 5 years of time window 

 

Period Trend 
DJIA NASDAQ SSCI SZCI 

Return Index Return Index Return Index Return Index 

1991 – 

1995 

Overall 0.1118 0.0602 0.9257 0.8433 

Upward 0.1817 0.1198 0.1531 0.0554 0.7908 1.0900 0.9473 0.4426 

Downward 0.0690 0.2019 0.0606 0.1510 0.9276 0.2972 0.7575 0.8692 

1996 -

2000 

Overall 0.1952 0.1744 0.4479 0.4667 

Upward 0.2046 0.1819 0.2434 0.1544 0.4260 0.4128 0.4808 0.3731 

Downward 0.2083 0.2422 0.1620 0.3486 0.4406 0.5521 0.4595 0.5684 

2001 – 

2005 

Overall 0.1687 0.1245 0.2584 0.3101 

Upward 0.2403 0.2258 0.1720 0.3042 0.3059 0.3752 0.3024 0.3913 

Downward 0.1689 0.2718 0.1878 0.2627 0.2425 0.2013 0.3248 0.3011 

2006 – 

2010 

Overall 0.3022 0.1704 0.2725 0.2583 

Upward 0.2571 0.3674 0.2289 0.2713 0.2986 0.3016 0.2824 0.2903 

Downward 0.4087 0.2610 0.2135 0.1724 0.2751 0.1478 0.2678 0.1866 

2011 - 

2015 

Overall 0.2770 0.2564 0.1280 0.0370 

Upward 0.2705 0.2841 0.2651 0.2179 0.2979 0.0862 0.2428 0.0849 

Downward 0.2914 0.3017 0.2813 0.3592 0.0824 0.2412 0.0710 0.2408 

time. The reason behind such phenomenon can be 

explained by the financial reform of Chinese stock market 

on 1996-12-16 where ± 10% of the price limit is 

established to prevent the speculative investment. In 

succession to the reform, 𝛥𝐻 of the Chinese indices in  the 

time window of 1996-2000 shows dramatic reduction in 

comparison to that of 1991-1995. It also indicates that the 

reform set the market to be more efficient.  

 

 

5. CONCLUSION 

 

In this paper, we apply the return- and index-based 

models of A-MFDFA to investigate the asymmetric mult i-

fractal scaling behavior o f the stock indices in G-2 

countries. 

At first, the asymmetry in fluctuation functions is 

detected through most of time-scale for all two models. In 

addition, the dynamics of fluctuation functions show the 

symmetric evolution. However, the index-based model 

separates the asymmetric scaling behavior more clearly 

than return-based model. Specifically, the phenomenon 

insists that the index-based model is more suitable in 

detecting the power-law dependency than the return-based 

one. Furthermore, the values of fluctuation functions for 

each trend exhib it the reversed order between return- and 

index-based models. 

Secondly, we exp lore the market efficiency of the U.S. 

and China stock markets  using the degree of mult i-fractality. 

For the total period, NASDAQ is most efficient market and 

DJIA, SZCI and SSCI show their efficiency in descending 

order. Additionally, the results of time-varying mult i-

fractality confirm the different market efficiency with 

respect to specific time window. In  the U.S. stock market, 

𝛥𝐻−  of return-based model indicates the inefficient market 

during sub-prime mortgage crisis, whereas that of index-

based model depicts the inefficient market during Dot-com 

bubble and European-debt crisis. Nevertheless , the Chinese 

market exh ib its the gradually decreasing 𝛥𝐻, 𝛥𝐻 +  and 

𝛥𝐻− , which suggests that the market is becoming more 

efficient. Since the dramat ic improvement of market 

efficiency is found in 1996-2000, we presume that the 

financial reform of China is the behind reason. 
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