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Abstract. This paper aims to propose a new mixed integer programming model to solve simultaneously 2-type 

cell production systems; divided cells and rotating cells by a reconfigurable labour-intensive manufacturing. In 

general, the divided cells are included in Cellular Manufacturing (CM) and the rotating cells are in Cell Production 

Systems (CPS). The advantages of CM and CPS have been widely documented by the large amount of literature. 

However, almost all manufacturing sites have the traditional assembly lines separately where one or several 

operators carry out parts/all of the operations in a cell. On the other hand, some advanced manufacturing sites 

have adopted both CM and CPS in order to absorb variability of demand and operators under the environment of 

limited multi-skilled operators. Especially, if the operators are replaced by robots, they are called robot cells which 

are focused as an important component of the cyber-physical system in the real world. Therefore, this paper tackles 

to propose an operator assignment model in reconfigurable labour-intensive manufacturing cells. Firstly, the 

traditional model is redefined by new parameters. Secondly, the new proposed model is solved by 2-phase 

optimization problems. Finally, the new model is compared with the traditional model by using numerical 

experiments. 
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1. INTRODUCTION 
 

The advantages of cellular manufacturing (CM) and Cell 

Production Systems (CPS) have been widely documented by a 

large amount of literature. The major advantages of CM are 

reduced lead time and work-in-process (WIP) inventory, 

improved visibility and quality, simplified scheduling and 

improved work environment due to team work. In fact, CM 

and CPS continue to be popular in both the real world and the 

literature. Generally, the literature has two streams of concepts. 

One deals with machine-intensive cells and the other with 

labour-intensive cells. 

Machine-intensive cells mean that the operator’s role is 

usually limited to loading and unloading the machines and 

machining times usually do not vary from one operator to the 

next. In other words, operator involvement is limited to 

machine-intensive cells as most of the processing is done by 

automated machines (Süer and Tummaluri, 2008). Generally, 

the so-called CM in machine-intensive cells is defined as a 

component of a cell formation problem (CFP) or a 

reconfigurable manufacturing system (RMS). Especially CFP 

is one of the most popular research fields regarding CM in 

machine-intensive cells. According to Papaioannou and 

Wilson (2010), CM is an application of Group Technology 

(GT), and it is common to use mathematical programming 

models with an objective function to minimize the total 



 

number of cellular movements. Other mathematical 

programming formulations involve cost objective functions. 

Furthermore, RMS is also a new paradigm, designed 

specifically for rapid modification in production capacity and 

functionality through system reconfiguration (Koren et al., 

1999; Hoda and ElMaraghy, 2006; Koren and Shpitalni, 2010). 

This is the reason why RMS has lower reconfiguration costs, 

more adjustable machine capacity and function than CFP 

(Ossama et al., 2014). Consequently, in these fields, objective 

functions focus on more rapid modifications and less cellular 

movements (i.e. lower cost) based on hardware-centred design. 

In labour-intensive cells, on the other hand, the 

assignment of operators plays a major role for the performance 

of the cell and directly affects the output of the cell. Generally, 

labour-intensive manufacturing cells are characterized by the 

presence of lightweight, small, inexpensive machines and 

equipment where continuous operator attendance and 

involvement is required. Consequently, the cell performance is 

not only affected by how the cells are loaded, but also by the 

performance of the operators. Thus, issues like operator skill 

levels, skill-based operation times, cross-training, learning 

rates, and movement of operators between operations and cells 

become too important to neglect (Süer and Tummaluri, 2008).  

Therefore, focusing on the functions in labour-intensive 

cells, the so-called CM in labour-intensive cells is defined as a 

production system where all divided tasks are operated by 

several semi-skilled workers and a short line staffed with 

several multi-skilled operators. Many tasks within a cell are 

divided into different operations. Each operation is operated by 

one or more workers (Yu et al., 2012; 2013a; 2013b; 2014). 

Normally, there are no buffers between two operators in a cell 

(Kasmo et al., 2013). In other words, in the case of no buffers, 

a cell implies a paced assembly line. On the other hand, 

Honiden and Hida (2004) offer a comparison of production 

systems for assembly cells with some buffers. Their models 

have both unlimited and limited buffers in a cell. For some 

buffers, a cell implies an un-paced assembly line. Sengupta and 

Jacobs (2004) compare assembly cells and assembly lines for 

a variety of operating environments. The model is effective for 

simulation in serial and parallel cells considering team 

working environments. However, according to Bidanda et al. 

(2005) and Süer and Tummaluri (2008), limited research has 

so far been conducted to investigate the effectiveness of the 

operator assignment, skill levels, and skill-level based 

operation times on the performance of CM systems. 

Furthermore, focusing on the approaches in labour-

intensive cells, there are two streams of concepts. One deals 

with the large volume production of a narrow variety of 

products and the other with the low volume production of a 

wide variety of products. In case of the large volume 

production of a narrow variety of products, the well-known 

traditional paced line deals with assembly line balancing 

problems (e.g. Becker and Scholl, 2006) or sequencing 

problems (e.g. Boysen et al. 2009) considering cycle time, 

work elements, and a precedence diagram on production 

planning. On the other hand, the low volume production of a 

wide variety of products has been one of the most important 

production concepts in the recent changeable demand and 

therefore in the global competition. Most of the research fields 

deal with paced or un-paced cells in labour-intensive cells 

where production rate, learning levels and team-work are 

based on human skill levels and human resource planning. 

Recent papers are mostly based on mixed integer and integer 

programming models regarding various divided cells on CM: 

Süer, 1996; Süer and Bera, 1997, 1998a, 1998b; Süer and 

Tummmaluri, 2008; McDonalda et al., 2009; Süer and 

Alhawari, 2012; Süer et al., 2013; Egilmez and Süer, 2011, 

2013, 2014. 

On the other hand, Kaku et al. (2008, 2009) propose a new 

theoretical model for line-cell conversion regarding various 

rotating cells on CPS. The model deals with CPS where a 

worker does all operational and managerial tasks by her- or 

himself. Such a Japanese CPS has been called “Seru” in Japan 

and other Asian countries. Seru, a new production organization, 

has been adopted by many leading global companies, such as 

Samsung, Sony, Canon, Panasonic, LG, and Fujitsu (Stecke et 

al., 2012). Seru overcame a lot of disadvantages inherent in 

Toyoya Production System (TPS) and brought amazing 

benefits to Seru users. For example: 1) Seru requires a much 

smaller workforce, 2) it can greatly reduce space requirements, 

and 3) it can reduce lead time, setup time, WIP inventories, 

finished-product inventories, and cost. 

In general, almost all manufacturing sites have separately 

the assembly lines where one or several operators carry out 

parts/all of the operations in a cell. On the other hand, some 

advanced manufacturing sites have adopted both of them in 

order to absorb variability of demand and operators. In 

particular, the reconfigurable production lines with both of CM 

and CPS are more effective to absorb unstable demand under 

the environment of limited multi-skilled operators and has only 

recently been adopted by some global companies. When the 

operators are replaced by robots in the real world, they are 

called robot cells and focused as an important component of 

the cyber-physical system in the large number of recent reports. 

Therefore, the purpose of this paper is to propose a new 

mixed integer programming model to minimize the number of 

operators in reconfigurable labour-intensive cells, and to solve 

not only CM but also CPS simultaneously. Section 2 presents 

the problem statement of this study. The new model is 

introduced in Section 3 and Section 4 presents some numerical 

experiments and results. The results of this paper are 

summarized in Section 5. 

 

 

2. PROBLEM STATEMENT 
 



 

There are n types of products with the demand rate of di 

in a period for product i. All products are produced by 

conducting s operations in turn, and the unit processing time of 

product i on operation o is tio. By allocating multiple operators, 

say Miok with configuration k, to operation o, the production 

rate of product i on operation o can be represented by Miok/tio. 

The output rate of product i is given by the minimum value of 

production rates among all operations, i.e., min{Mi1k/ti1, 

Mi2k/ti2, ..., Misk/tis}. This means that by allocating more 

operators to operations, the output rate will be increased, but 

the rate of increase will be reduced. In addition, there may be 

a limitation on the maximum number of operators in every 

operation. Thus, it is generally impossible to process all 

product types in a single cell under the available production 

time h in any periods. The present study assumes that the 

maximum number of cells is m. The bjk denotes the number of 

operators with configuration k in cell j = 1,…,m. 

The problem involves the following decision variables; 

the number of operators allocated to each operation in each cell, 

and the allocation of products to cells. The total number of 

operators required is minimized while the demand of all 

products is satisfied. Some previous papers (e.g. Süer and 

Tummmaluri, 2008) solve the problem sequentially, i.e., in the 

first phase, the maximum production rate and operator 

allocation for each product and the number of available 

operators are determined as shown in Figure 1. In the second 

phase, optimal operator levels and loads in each cell are 

determined as shown in Figure 1. 

Figure 1: The concept figure of the 2-phase model 

 

 

3. MODELLING 
 

The object of this paper is to build the deterministic 

reconfigurable production modeling with both CM and CPS. 

We assume that the first object is to determine optimal operator 

levels and loads in each cell. Products are assigned to cells and 

also the operator level for each cell is determined. These two 

tasks are also accomplished simultaneously by using a mixed 

integer programming model based on the previous model (Süer, 

1996).  

In this study, the following formulation is also added to 

the objective function to guarantee minimizing not only the 

total number of operators but also the total time required to 

produce all products. That is because the combination of 

optimal operator levels (:integer) might be plural. The Z' 

(:decimal) is obtained by dividing the total time required to 

produce all products by the total time available in a period 

(h*m). By this constitution, the optimal solution is determined 

uniquely. 

𝑍′ = (∑∑∑𝑝𝑖𝑗𝑘 ∗ 𝑋𝑖𝑗𝑘

𝑎𝑗

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

)/ (ℎ ∗ 𝑚) 

The 𝑝𝑖𝑗𝑘 values, i.e. the time required to produce product 

i in cell j with configuration k, are different between CM model 

and CPS model as follows. 

 

(CM model) 

The 𝑝𝑖𝑗𝑘  values are obtained by dividing demand (𝑑𝑖) by 

the corresponding production rates (𝑅𝑖𝑘 ) as the following 

formulation (𝑝𝑖𝑗𝑘 = 𝑑𝑖/𝑅𝑖𝑘 ). Consequently, the equation is 

transformed as follows, 

∑
𝑑𝑖
𝑅𝑖𝑘

∗ 𝑋𝑖𝑗𝑘 ≤

𝑛

𝑖=1

ℎ ∗ 𝑌𝑗𝑘      ∀𝑗, 𝑘 

where, 𝑋𝑖𝑗𝑘 and  𝑌𝑗𝑘 are decision variables.  

If the production rate (𝑅𝑖𝑘) is also a decision variable, the 

equation is a non-linier constraint. In this study, the 𝑅𝑖𝑘  is 

defined as a parameter in the phase 2 and thus is calculated by 

using a simple mixed integer programming in the phase 1. We 

can see it in the end of this section. 

 

(CPS model) 

A worker on CPS does all operational and managerial 

tasks by her- or himself. A rotating cell is often organized in a 

U-shaped layout with several workers. Each worker assembles 

an entire product from start to finish without disruption. The 

assembly tasks are performed on fixed stations, thus workers 

walk from station to station. Multiple multi-skilled workers are 

often assigned to rotating cells. It depends on the requirement 

of production capability of cells, cell size, the complexity of 

the process, and so on. In the case of multiple workers, cycle 

time, i.e. the production rate of the lowest multi-skilled worker, 

is the bottleneck. However, we must note that the output rate 

for product i in the case of rotating cells on CPS is constant 

regardless of operator skills in this model. The unit standard 

time for operation o of product i is 𝑡𝑖𝑜. Therefore, cycle time 

is calculated by ∑ 𝑡𝑖𝑜
𝑠
𝑜=1  , and thus production rates are 

(1/∑ 𝑡𝑖𝑜
𝑠
𝑜=1 ). Consequently, the production rate for product i 

assigned to cell j with configuration k on CPS is defined as 

((1/∑ 𝑡𝑖𝑜
𝑠
𝑜=1 )*𝑏𝑗𝑘), where the 𝑏𝑗𝑘 is the manpower required 

for configuration k in cell j. 

 

(Reconfigurable model) 

In the reconfigurable model, these two models are 

integrated as follows. The 𝑝𝑖𝑗𝑘   values are obtained by the 

(Phase 2) (Phase 1) 

Alternative configuration: k 



 

following equation. The 𝑚′ value is the number of cells on 

CM. The 𝑚 value is the total number of CM and CPS. 

𝑝𝑖𝑗𝑘

=

{
 
 

 
 
𝑑𝑖
𝑅𝑖𝑘

,                   𝑗 = 1, 2,… ,𝑚′

𝑑𝑖

(
1

∑ 𝑡𝑖𝑜
𝑠
𝑜=1

) ∗ 𝑏𝑗𝑘
,      𝑗 = 𝑚′ + 1,… ,𝑚

            ∀𝑖, 𝑘 

To consider setup times, a new constraint is added to the 

reconfigurable model (Süer and Bera, 1998a). The setup time 

is accounted for as long as an item is produced in that cell. The 

new decision variable 𝑍𝑖𝑗𝑘 takes a value of 1 if any fraction 

of product i has been assigned to cell j (regardless of 

configuration k), 0 otherwise. In other words, the 𝑍𝑖𝑗𝑘 value 

is a decision variable to confirm whether an item is produced 

in CM or not: 𝑍𝑖𝑗𝑘 ≥ ∑ 𝑋𝑖𝑗𝑘
𝑎𝑗
𝑘=1 . Generally, the setup time on 

CPS should be less than that on CM. 

Moreover, the 𝑞𝑖 value is setup time for product i. The 

previous equation is modified to the following equation to 

consider setup time. 

∑(𝑝𝑖𝑗𝑘 ∗ 𝑋𝑖𝑗𝑘 + 𝑞𝑖 ∗ 𝑍𝑖𝑗𝑘) ≤

𝑛

𝑖=1

ℎ ∗ 𝑌𝑗𝑘      ∀𝑗, 𝑘 

The 𝑋𝑖𝑗𝑘 is allowed to take real and positive values. This 

means that lot-splitting is allowed (Süer and Bera, 1998). This 

variable indicates what fraction of a job has been assigned to 

cell j with configuration k, i.e. a product can be produced in 

more than one cell in the same period. As a result, each product 

might have been assigned to several cells to use cell capacity 

more efficiently. 

 

Indices: 

𝑖 index set of products (i=1,2,…,n) 

𝑗 index set of cells (j=1,2,…,m) 

𝑘 index set of configurations (k=1,2,…,𝑎𝑗) 

𝑜 index set of operations (o=1,2,….,s) 

Variables: 

𝑝𝑖𝑗𝑘  the time required to produce product i in cell j 

with configuration k 

Parameters: 

𝑛 the number of products 

𝑚 the total number of cells 

𝑎𝑗  the number of alternative configurations for 

cell j 

𝑠 the number of operations 

𝑢𝑖𝑜 the upper limit for operator level for operation 

o of product i 

𝑡𝑖𝑜 the unit standard time (standard operation 

time) for operation o of product i 

𝑤𝑗𝑘  the total operators available in the cell j with 

configuration k 

ℎ the time available in a period 

𝑚′ the number of cells on CM 

𝑑𝑖  the demand of product i 

𝑏𝑗𝑘  the manpower required for configuration k in 

cell j 

𝑞𝑖  the setup time for product i 

Decision variables: 

𝑅𝑖𝑘  the production rate for product i with 

configuration k 

𝑀𝑖𝑘𝑜  the operator level for operation o of product i 

with configuration k 

𝑋𝑖𝑗𝑘  the product i assigned to cell j with 

configuration k 

𝑌𝑗𝑘 the alternative configuration k for cell j 

𝑍𝑖𝑗𝑘  Any fraction of product i assigned to cell j 

regardless of configuration k 

 

(Phase 1) 

The objective is to determine the optimal allocation of 

operators to operations such that the output rate is maximized 

for a given operator level based on the previous model (Süer, 

1996). The output rate is determined based on the bottleneck 

operation. Alternative operator levels are generated for each 

product by using operation standard times. For each operator 

level, the number of operators needed to perform the operation 

is determined by using this model. 

The objective function maximizes the output rate as given 

in equation (1). Equation (2) guarantees that each operation is 

assigned enough operators to accomplish the maximum output 

rate. Equation (3) establishes the upper limit on the number of 

operators for each operation, whereas equation (4) gives the 

restriction on the total number of operators. 

 

Objective function: 

𝑍1 = 𝑀𝑎𝑥 (𝑅𝑖𝑘) (1) 

Subject to: 

(𝑀𝑖𝑘𝑜) ∗ (
1

𝑡𝑖𝑜
) − 𝑅𝑖𝑘 ≥ 0     ∀𝑖, 𝑘, 𝑜 (2) 



 

𝑀𝑖𝑘𝑜 ≤ 𝑢𝑖𝑜     ∀𝑖, 𝑘, 𝑜 (3) 

∑𝑀𝑖𝑘𝑜 ≤

𝑠

𝑜=1

𝑤𝑗𝑘      ∀𝑖, 𝑗, 𝑘 (4) 

𝑀𝑖𝑘𝑜      𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒    ∀𝑖, 𝑘, 𝑜  

𝑅𝑖𝑘     𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒    ∀𝑖, 𝑘  

 

(Phase 2) 

The objective function minimizes the total number of 

operators and the total time required to produce all products as 

given in equation (5). Each product must be assigned to a cell 

as shown in equation (6). Equation (7) guarantees that each cell 

will have at most one configuration (i.e., operator level). 

Equation (8) establishes the upper limit on available capacity 

in each cell. Finally, equation (9) confirms whether a product 

is produced in cells or not. 

 

Objective function: 

𝑍2 = 𝑀𝑖𝑛{ ∑∑𝑏𝑗𝑘 ∗ 𝑌𝑗𝑘

𝑎𝑗

𝑘=1

𝑚

𝑗=1

+ (∑∑∑𝑝𝑖𝑗𝑘 ∗ 𝑋𝑖𝑗𝑘

𝑎𝑗

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

)/ (ℎ ∗ 𝑚) } (5) 

Subject to: 

∑∑𝑋𝑖𝑗𝑘

𝑎𝑗

𝑘=1

𝑚

𝑗=1

= 1     ∀𝑖 (6) 

∑𝑌𝑗𝑘

𝑎𝑗

𝑘=1

≤ 1     ∀𝑗 (7) 

∑(𝑝𝑖𝑗𝑘 ∗ 𝑋𝑖𝑗𝑘 + 𝑞𝑖 ∗ 𝑍𝑖𝑗𝑘) ≤

𝑛

𝑖=1

ℎ ∗ 𝑌𝑗𝑘      ∀𝑗, 𝑘 (8) 

𝑍𝑖𝑗𝑘 ≥∑𝑋𝑖𝑗𝑘

𝑎𝑗

𝑘=1

    ∀𝑖, 𝑗 (9) 

𝑋𝑖𝑗𝑘      𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑒    ∀𝑖, 𝑗, 𝑘  

𝑌𝑗𝑘  ∈  {0, 1}    ∀𝑗, 𝑘  

𝑍𝑖𝑗𝑘    ∈  {0, 1}     ∀𝑖, 𝑗, 𝑘  

 

 
4. EXPERIMENTS  
 

In the experiments of this section, the manufacturing 

process consists of 5 operations and 10 products. The standard 

times for operations 1, 2, 3, 4 and 5 are randomly generated 

from uniform distributions in the intervals of [0.04, 0.09], 

[0.28, 0.45], [0.37, 1.18], [0.47, 0.88] and [0.18, 0.45], 

respectively as shown in Table 4. 10 alternative operator levels 

are considered, namely [10…19] on CM and [1…10] on CPS, 

respectively. Unit transfer size is assumed and the output rate 

is determined based on the bottleneck operation. By using 

Table 1, the optimal production rate for product i with 

configuration k on CM is shown in Table 2. Furthermore, the 

output rate (1/∑ 𝑡𝑖𝑜
𝑠
𝑜=1 ) for product i on CPS in the case of a 

one-worker rotating cell is constant regardless of operator 

skills in this section. Consequently, the production rate 

((1/∑ 𝑡𝑖𝑜
𝑠
𝑜=1 )*𝑏𝑗𝑘) for product i with configuration k on CPS 

is calculated as shown in Table 3. 

 

Table 1: Standard unit processing times 

(Süer and Tummaluri, (2008)) 

 

Table 2: The optimal production rate for product i  

with configuration k on CM 

 

Table 3: The production rate for product i  

with configuration k on CPS 

 

4.1 The time available (h) in single-period 
 

Generally, the value of h, i.e. the time available in a period, 

is set to the constant (e.g. 2,400 minutes ( = 5 days * 8 hours * 

Product 10 11 12 13 14 15 16 17 18 19

1 3.41 4.44 4.55 5.26 5.41 5.68 6.67 6.82 7.89 7.95

2 3.45 4.05 4.84 5.26 5.41 6.45 6.76 6.90 7.89 8.06

3 3.39 3.45 3.49 4.24 4.65 5.08 5.56 5.81 5.93 6.78

4 4.26 5.00 5.45 6.38 6.45 7.27 7.50 8.51 9.09 9.68

5 4.05 4.65 4.65 4.88 5.41 6.76 6.98 6.98 7.32 8.11

6 3.13 3.39 3.64 4.24 4.44 5.08 5.45 5.93 6.25 6.67

7 4.35 5.41 6.12 6.52 7.69 8.11 8.16 8.70 10.20 10.81

8 4.08 4.92 6.12 6.56 6.90 7.14 8.16 8.20 9.84 10.20

9 3.23 3.70 4.84 4.94 5.88 5.88 6.17 6.45 7.41 8.06

10 2.70 3.45 4.05 4.60 4.65 4.65 5.41 5.75 6.76 6.90

Configurations

Product 1 2 3 4 5 6 7 8 9 10

1 0.47 0.93 1.40 1.86 2.33 2.79 3.26 3.72 4.19 4.65

2 0.48 0.96 1.44 1.92 2.40 2.88 3.37 3.85 4.33 4.81

3 0.39 0.78 1.17 1.56 1.95 2.33 2.72 3.11 3.50 3.89

4 0.56 1.13 1.69 2.26 2.82 3.39 3.95 4.52 5.08 5.65

5 0.48 0.96 1.44 1.91 2.39 2.87 3.35 3.83 4.31 4.78

6 0.39 0.78 1.17 1.56 1.95 2.33 2.72 3.11 3.50 3.89

7 0.60 1.20 1.80 2.40 2.99 3.59 4.19 4.79 5.39 5.99

8 0.57 1.14 1.71 2.29 2.86 3.43 4.00 4.57 5.14 5.71

9 0.47 0.93 1.40 1.86 2.33 2.79 3.26 3.72 4.19 4.65

10 0.39 0.79 1.18 1.57 1.97 2.36 2.76 3.15 3.54 3.94

Configurations

Product 1 2 3 4 5

1 0.07 0.45 0.37 0.88 0.38

2 0.05 0.29 0.62 0.74 0.38

3 0.06 0.29 1.18 0.86 0.18

4 0.04 0.31 0.55 0.47 0.40

5 0.08 0.41 0.43 0.74 0.43

6 0.07 0.32 1.18 0.55 0.45

7 0.09 0.37 0.46 0.49 0.26

8 0.08 0.28 0.49 0.61 0.29

9 0.04 0.34 0.81 0.62 0.34

10 0.07 0.43 0.74 0.87 0.43

Operations



 

60 minutes )) during the experiment. However, it might not be 

the constraint due to official holiday, periodic maintenance, 

machine failure, and so on. We study cases in which the 

parameter h ranged from 1,500 to 2,500 to confirm this 

supposition without setup time in this subsection. 

In the experiment, we use the demand of single-period as 

shown in Table 4. The mean period demand for product i is 

randomly generated from uniform distribution in the interval 

of [2200, 7500]. Then, the period demand is summarized for 

each period. The variation in period demand is (+/-2%-20%) 

of the mean and in multiples of 50 units (Süer and Tummaluri, 

2008). For example, Table 5 represents an example of the 

optimal solution on the reconfigurable model for period 1 as 

shown in Table 4. The optimal cell sizes are determined to be 

18 and 19 operators for CM 1 and 2, 8 and 5 operators for CPS 

1 and 2, respectively. The mathematical model also produces 

loads on each CM and CPS, and guarantees to minimize not 

only the total number of operators but also for the total time 

required to produce all products. However, the sequence of 

jobs on each cell has been determined randomly. 

 

Table 4: Demand figures for single-period analysis 

 

Table 5: The optimal solution of the reconfigurable model 

 for period 1 (h=1,600) 

 

Figure 2: The first reconfigurable configuration of 

the optimal solution in Table 5 

 

 

Table 6 shows the optimal solution of both the traditional 

model and the proposed model for the time available (h) in 

single-period. Figure 3 shows the number of operators and 

Figure 4 shows the ratio of the number of operators in 

reconfigurable model, respectively. 

For the total number of operators required, the proposed 

model has a smaller number of operators than the traditional 

model in the all cases. The gap between them is almost the 

constant (i.e. 2 or 3 operators) regardless of the time available 

(h) in a period as shown in Table 6. This means the proposed 

model is more effective than the traditional model. 

There is a huge configuration gap between 2,000 (h) and 

2,100 (h) in the reconfigurable model. As the result of more 

detailed simulation, it occurs between 2,007 (h) and 2,008 (h), 

suddenly. This is because it comes up to the upper bound on 

the total number of operators, i.e. alternative configurations in 

CM and CPS on the time available of 2,008 (h). 

 

Table 6: The optimal solution of each model on 

 the available time in a period (h) 

Figure 3: The number of operators  

in the reconfigurable model 

Cell Operators Optimal Operation

Type Range Solution Time

CM 1 15-20 18 P1 P2 P8 P10

443 489 224 444 1,600

CM 2 15-20 19 P3 P6 P7 P9

502 397 416 285 1,600

CPS 1 3-8 8 P2 P4 P5

428 597 575 1,600

CPS 2 3-8 5 P2 P6

829 695 1,525

Total number of operators: 50 Total operation time: 6,325

Products / Processing time

Traditional 1,500 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500

CM 1 18 18 18 18 18 18 18 19 18 19 15

CM 2 19 19 16 19 15 15 13 19 19 16 19

CM 3 18 15 15 10 12 10 10

Operators 55 52 49 47 45 43 41 38 37 35 34

Av.Op_time 1,489 1,572 1,696 1,738 1,859 1,925 2,061 2,187 2,209 2,378 2,436

Proposed

CM 1 18 18 18 18 18 18 18 18 18 15 18

CM 2 15 19 15 19 19 19

CPS 1 10 10 10 8 6 4 10 10 10 10 10

CPS 2 10 3 4 10 8 6 8 4

Operators 53 50 47 45 43 41 38 36 34 33 32

Av.Op_time 1,487 1,569 1,687 1,771 1,842 1,917 2,031 2,174 2,292 2,395 2,364

Available Time (h )

☺ ☺☺☺☺ ☺☺☺ ☺☺☺☺ ☺☺☺

Operation 1 Operation 2 Operation 3 Operation 4 Operation 5

☺☺☺

☺ ☺☺ ☺☺☺☺ ☺☺☺ ☺☺

Operation 1 Operation 2 Operation 3 Operation 4 Operation 5

☺☺☺☺ ☺☺☺

Operation 5 Operation 4

☺     ☺
☺     ☺

☺     ☺
☺     ☺

Operation 1 Operation 2

O
p
eratio

n
 3

Operation 5 Operation 4

☺

☺

☺     ☺
☺

Operation 1 Operation 2

O
p
eratio

n
 3

CPS 2: 

CPS 1: 

CM 1: 

CM 2: 

Period 1 2 3 4 5 6 7 8 9 10

1 3,500 7,500 3,400 2,700 2,200 4,000 4,500 2,200 2,300 3,000

Products



 

Figure 4: The ratio of the number of operators 

in reconfigurable model 

4.2 The demand and variation in single-period 
 

The demand values are set using a normal distribution 

with mean values ranging from 2,500 to 4,500, and a standard 

deviation ranging from 50 to 1,050 as shown in Table 7. The 

value of h, i.e. the time available in single-period, is set to the 

constant (1,800) during the experiment. 

For the total number of operators required, the proposed 

model has a smaller number of operators than the traditional 

model in the all cases. This means the proposed model is more 

effective than the traditional model. On the other hand, when 

the deviation is smaller, almost optimal solution is also smaller 

with respect to the total number of operators in single-period 

regardless of model types. 

Especially, when deviation is smaller, the total number of 

operators on CPS, i.e., CPS1 and CPS2, is also smaller, i.e. 13, 

7, 19 for each demand in the proposed model. This means the 

proposed model might have the potential to absorb variability 

of demand and operators by not CM but CPS. 

 

Table 7: The optimal solution of each model for 

 each demand (𝜇) and deviation (𝜎) (N=1) 

 

 

5. CONCLUSION  
 

In this paper, a new mixed integer programming model 

with 2-type cell production systems was proposed to overcome 

some shortcomings of the traditional model for minimizing the 

total number of operators in labour-intensive cells. Firstly, the 

traditional model was redefined by new production rates. 

Secondly, the new proposed model was solved by 2-phase 

optimization problems. Furthermore, the new model was 

compared with the traditional model by using numerical 

experiments. As a result, this paper showed better cases in 

which the proposed model could lead to fewer operators and 

more stable operator assignments than the traditional model. 

Even if the scale of the problem increases, the proposed model 

will be able to handle the large-scale problems because 2-phase 

optimization problems are not complex. 

In future, we would like to solve the large-scale problems 

including robot cells and propose a new mixed integer 

programming model without phases in reconfigurable 

production systems. Since the model without phases needs 

more time to obtain optimal solutions than the 2-phase model, 

we would like to confirm how it performs if problems get 

larger, i.e. if there are more cells. 
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