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Abstract. This paper aims to propose a new mixed integer programming model to solve simultaneously 2-type
cell production systems; divided cells and rotating cells by a reconfigurable labour-intensive manufacturing. In
general, the divided cells are included in Cellular Manufacturing (CM) and the rotating cells are in Cell Production
Systems (CPS). The advantages of CM and CPS have been widely documented by the large amount of literature.
However, almost all manufacturing sites have the traditional assembly lines separately where one or several
operators carry out parts/all of the operations in a cell. On the other hand, some advanced manufacturing sites
have adopted both CM and CPS in order to absorb variability of demand and operators under the environment of
limited multi-skilled operators. Especially, if the operators are replaced by robots, they are called robot cells which
are focused as an important component of the cyber-physical system in the real world. Therefore, this paper tackles
to propose an operator assignment model in reconfigurable labour-intensive manufacturing cells. Firstly, the
traditional model is redefined by new parameters. Secondly, the new proposed model is solved by 2-phase
optimization problems. Finally, the new model is compared with the traditional model by using numerical
experiments.
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1. INTRODUCTION

The advantages of cellular manufacturing (CM) and Cell
Production Systems (CPS) have been widely documented by a
large amount of literature. The major advantages of CM are
reduced lead time and work-in-process (WIP) inventory,
improved visibility and quality, simplified scheduling and
improved work environment due to team work. In fact, CM
and CPS continue to be popular in both the real world and the
literature. Generally, the literature has two streams of concepts.
One deals with machine-intensive cells and the other with
labour-intensive cells.

Machine-intensive cells mean that the operator’s role is

usually limited to loading and unloading the machines and
machining times usually do not vary from one operator to the
next. In other words, operator involvement is limited to
machine-intensive cells as most of the processing is done by
automated machines (Stier and Tummaluri, 2008). Generally,
the so-called CM in machine-intensive cells is defined as a
component of a cell formation problem (CFP) or a
reconfigurable manufacturing system (RMS). Especially CFP
is one of the most popular research fields regarding CM in
machine-intensive cells. According to Papaioannou and
Wilson (2010), CM is an application of Group Technology
(GT), and it is common to use mathematical programming
models with an objective function to minimize the total



number of cellular movements. Other mathematical
programming formulations involve cost objective functions.
Furthermore, RMS is also a new paradigm, designed
specifically for rapid modification in production capacity and
functionality through system reconfiguration (Koren et al.,
1999; Hoda and ElMaraghy, 2006; Koren and Shpitalni, 2010).
This is the reason why RMS has lower reconfiguration costs,
more adjustable machine capacity and function than CFP
(Ossama et al., 2014). Consequently, in these fields, objective
functions focus on more rapid modifications and less cellular
movements (i.e. lower cost) based on hardware-centred design.
In labour-intensive cells, on the other hand, the
assignment of operators plays a major role for the performance
of the cell and directly affects the output of the cell. Generally,
labour-intensive manufacturing cells are characterized by the
presence of lightweight, small, inexpensive machines and
equipment where continuous operator attendance and
involvement is required. Consequently, the cell performance is
not only affected by how the cells are loaded, but also by the
performance of the operators. Thus, issues like operator skill
levels, skill-based operation times, cross-training, learning
rates, and movement of operators between operations and cells
become too important to neglect (Siier and Tummaluri, 2008).
Therefore, focusing on the functions in labour-intensive
cells, the so-called CM in labour-intensive cells is defined as a
production system where all divided tasks are operated by
several semi-skilled workers and a short line staffed with
several multi-skilled operators. Many tasks within a cell are
divided into different operations. Each operation is operated by
one or more workers (Yu et al., 2012; 2013a; 2013b; 2014).
Normally, there are no buffers between two operators in a cell
(Kasmo et al., 2013). In other words, in the case of no buffers,
a cell implies a paced assembly line. On the other hand,
Honiden and Hida (2004) offer a comparison of production
systems for assembly cells with some buffers. Their models
have both unlimited and limited buffers in a cell. For some
buffers, a cell implies an un-paced assembly line. Sengupta and
Jacobs (2004) compare assembly cells and assembly lines for
a variety of operating environments. The model is effective for
simulation in serial and parallel cells considering team
working environments. However, according to Bidanda et al.
(2005) and Siier and Tummaluri (2008), limited research has
so far been conducted to investigate the effectiveness of the
operator assignment, skill levels, and skill-level based
operation times on the performance of CM systems.
Furthermore, focusing on the approaches in labour-
intensive cells, there are two streams of concepts. One deals
with the large volume production of a narrow variety of
products and the other with the low volume production of a
wide variety of products. In case of the large volume
production of a narrow variety of products, the well-known
traditional paced line deals with assembly line balancing
problems (e.g. Becker and Scholl, 2006) or sequencing

problems (e.g. Boysen et al. 2009) considering cycle time,
work elements, and a precedence diagram on production
planning. On the other hand, the low volume production of a
wide variety of products has been one of the most important
production concepts in the recent changeable demand and
therefore in the global competition. Most of the research fields
deal with paced or un-paced cells in labour-intensive cells
where production rate, learning levels and team-work are
based on human skill levels and human resource planning.
Recent papers are mostly based on mixed integer and integer
programming models regarding various divided cells on CM:
Siier, 1996; Siier and Bera, 1997, 1998a, 1998b; Siier and
Tummmaluri, 2008; McDonalda et al.,, 2009; Sier and
Alhawari, 2012; Ster et al., 2013; Egilmez and Siier, 2011,
2013, 2014.

On the other hand, Kaku et al. (2008, 2009) propose a new
theoretical model for line-cell conversion regarding various
rotating cells on CPS. The model deals with CPS where a
worker does all operational and managerial tasks by her- or
himself. Such a Japanese CPS has been called “Seru” in Japan
and other Asian countries. Seru, a new production organization,
has been adopted by many leading global companies, such as
Samsung, Sony, Canon, Panasonic, LG, and Fujitsu (Stecke et
al., 2012). Seru overcame a lot of disadvantages inherent in
Toyoya Production System (TPS) and brought amazing
benefits to Seru users. For example: 1) Seru requires a much
smaller workforce, 2) it can greatly reduce space requirements,
and 3) it can reduce lead time, setup time, WIP inventories,
finished-product inventories, and cost.

In general, almost all manufacturing sites have separately
the assembly lines where one or several operators carry out
parts/all of the operations in a cell. On the other hand, some
advanced manufacturing sites have adopted both of them in
order to absorb variability of demand and operators. In
particular, the reconfigurable production lines with both of CM
and CPS are more effective to absorb unstable demand under
the environment of limited multi-skilled operators and has only
recently been adopted by some global companies. When the
operators are replaced by robots in the real world, they are
called robot cells and focused as an important component of
the cyber-physical system in the large number of recent reports.

Therefore, the purpose of this paper is to propose a new
mixed integer programming model to minimize the number of
operators in reconfigurable labour-intensive cells, and to solve
not only CM but also CPS simultaneously. Section 2 presents
the problem statement of this study. The new model is
introduced in Section 3 and Section 4 presents some numerical
experiments and results. The results of this paper are
summarized in Section 5.

2. PROBLEM STATEMENT



There are n types of products with the demand rate of d;
in a period for product i. All products are produced by
conducting s operations in turn, and the unit processing time of
product i on operation o is t;,. By allocating multiple operators,
say Mo with configuration &, to operation o, the production
rate of product i on operation o can be represented by Mioi/tio.
The output rate of product i is given by the minimum value of
production rates among all operations, i.e., min{M;u/ti;,
Misiltis, ..., Mig/ti}. This means that by allocating more
operators to operations, the output rate will be increased, but
the rate of increase will be reduced. In addition, there may be
a limitation on the maximum number of operators in every
operation. Thus, it is generally impossible to process all
product types in a single cell under the available production
time 4 in any periods. The present study assumes that the
maximum number of cells is m. The bj denotes the number of
operators with configuration k in cell j = 1,...,m

The problem involves the following decision variables;
the number of operators allocated to each operation in each cell,
and the allocation of products to cells. The total number of
operators required is minimized while the demand of all
products is satisfied. Some previous papers (e.g. Ster and
Tummmaluri, 2008) solve the problem sequentially, i.e., in the
first phase, the maximum production rate and operator
allocation for each product and the number of available
operators are determined as shown in Figure 1. In the second
phase, optimal operator levels and loads in each cell are
determined as shown in Figure 1.
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Figure 1: The concept figure of the 2-phase model

3. MODELLING

The object of this paper is to build the deterministic
reconfigurable production modeling with both CM and CPS.
We assume that the first object is to determine optimal operator
levels and loads in each cell. Products are assigned to cells and
also the operator level for each cell is determined. These two
tasks are also accomplished simultaneously by using a mixed

integer programming model based on the previous model (Siier,

1996).
In this study, the following formulation is also added to
the objective function to guarantee minimizing not only the

total number of operators but also the total time required to
produce all products. That is because the combination of
optimal operator levels (:integer) might be plural. The Z'
(:decimal) is obtained by dividing the total time required to
produce all products by the total time available in a period
(h*m). By this constitution, the optimal solution is determined

uniquely.
a

n m J
2= 3 b X/ (exm)
i=1j=1k=1
The p;j values, i.e. the time required to produce product
i in cell j with configuration £, are different between CM model
and CPS model as follows.

(CM model)
The p;j values are obtained by dividing demand (d;) by

the corresponding production rates (R;j;) as the following
formulation (p;j, = d;/R;). Consequently, the equation is

transformed as follows,
n

ZRd—i’k*X,-ijh*ij V), k
i=1

where, X;j, and Yj, are decision variables.

If the production rate (R;;) is also a decision variable, the
equation is a non-linier constraint. In this study, the R;, is
defined as a parameter in the phase 2 and thus is calculated by
using a simple mixed integer programming in the phase 1. We
can see it in the end of this section.

(CPS model)

A worker on CPS does all operational and managerial
tasks by her- or himself. A rotating cell is often organized in a
U-shaped layout with several workers. Each worker assembles
an entire product from start to finish without disruption. The
assembly tasks are performed on fixed stations, thus workers
walk from station to station. Multiple multi-skilled workers are
often assigned to rotating cells. It depends on the requirement
of production capability of cells, cell size, the complexity of
the process, and so on. In the case of multiple workers, cycle
time, i.e. the production rate of the lowest multi-skilled worker,
is the bottleneck. However, we must note that the output rate
for product 7 in the case of rotating cells on CPS is constant
regardless of operator skills in this model. The unit standard
time for operation o of product i is t;,. Therefore, cycle time
is calculated by Y3_;t;,, and thus production rates are
(1/ ¥3=1tio). Consequently, the production rate for product i
assigned to cell j with configuration £ on CPS is defined as
((1/ X5=1tio)*bji), where the bj) is the manpower required
for configuration & in cell ;.

(Reconfigurable model)
In the reconfigurable model, these two models are
integrated as follows. The p;;; values are obtained by the




following equation. The m' value is the number of cells on
CM. The m value is the total number of CM and CPS.

Dijk

d;
Ry’
- { d
I ,
(o) b
To consider setup times, a new constraint is added to the
reconfigurable model (Siier and Bera, 1998a). The setup time
is accounted for as long as an item is produced in that cell. The
new decision variable Z;;, takes a value of 1 if any fraction
of product i has been assigned to cell j (regardless of
configuration k), 0 otherwise. In other words, the Z;; value
is a decision variable to confirm whether an item is produced
in CM or not: Z;j, = ZZ; 1 Xijk- Generally, the setup time on
CPS should be less than that on CM.
Moreover, the g; value is setup time for product i. The
previous equation is modified to the following equation to
consider setup time.

n
Z(pi}'k * Xijie + Qi * Ziji) S h =Yy v,k

i=1

The X;jj isallowed to take real and positive values. This

means that lot-splitting is allowed (Siier and Bera, 1998). This
variable indicates what fraction of a job has been assigned to
cell j with configuration £, i.e. a product can be produced in
more than one cell in the same period. As a result, each product
might have been assigned to several cells to use cell capacity
more efficiently.

Indices:

i index set of products (i=1,2,...,n)

j index set of cells (j=1,2,...,m)

k index set of configurations (k=1,2,...,a;)
0] index set of operations (0=1,2,....,s)
Variables:
Pijk the time required to produce product i in cell j

with configuration k&

Parameters:
n the number of products
m the total number of cells
a; the number of alternative configurations for
cellj
s the number of operations
Ujp the upper limit for operator level for operation

o of product i

tio the unit standard time (standard operation
time) for operation o of product i
Wi the total operators available in the cell j with
configuration k
h the time available in a period
m the number of cells on CM

d; the demand of product i

bjx the manpower required for configuration & in
cellj
qi the setup time for product i

Decision variables:

Ry the production rate for product i with
configuration k

M,  the operator level for operation o of product i
with configuration &

Xijk the product 7 assigned to cell j with
configuration k

Yk the alternative configuration k for cell j

Zijk Any fraction of product i assigned to cell j

regardless of configuration &

(Phase 1)

The objective is to determine the optimal allocation of
operators to operations such that the output rate is maximized
for a given operator level based on the previous model (Siier,
1996). The output rate is determined based on the bottleneck
operation. Alternative operator levels are generated for each
product by using operation standard times. For each operator
level, the number of operators needed to perform the operation
is determined by using this model.

The objective function maximizes the output rate as given
in equation (1). Equation (2) guarantees that each operation is
assigned enough operators to accomplish the maximum output
rate. Equation (3) establishes the upper limit on the number of
operators for each operation, whereas equation (4) gives the
restriction on the total number of operators.

Objective function:
Zy = Max (Ry) (1
Subject to:
1
(Mixo) * (t_) —Ry 20

io

Vi, k,0 )



Migo < Ujo Vi, k,0 3)
N
ZMiko SW}k Vl,],k (4)
o=1
Mo integer and positive Vi, k,0
Rix real and positive Vi, k

(Phase 2)

The objective function minimizes the total number of
operators and the total time required to produce all products as
given in equation (5). Each product must be assigned to a cell
as shown in equation (6). Equation (7) guarantees that each cell
will have at most one configuration (i.e., operator level).
Equation (8) establishes the upper limit on available capacity
in each cell. Finally, equation (9) confirms whether a product
is produced in cells or not.

Objective function:

m 4 n 4j

Z, = Min{ Zijk*ij+(zzzpijk* ijk)/ (hxm) } (5)
j=1k=1 i=1j=1k=1
Subject to:
m 4
Z Z Xp=1 Vi 6)
j=1k=1
aj
Z Y <1 vj (7
k=1
n
Z(pijk * Xije + qi * Zijie) S h Yy vk (®)
i=1
aj
Zije = Z Xijk Vi, j )
k=1
Xijk real and positie Vi, j, k
Y € {0,1}  Vjk
Zjy € {01} vi,j k
4. EXPERIMENTS

In the experiments of this section, the manufacturing
process consists of 5 operations and 10 products. The standard
times for operations 1, 2, 3, 4 and 5 are randomly generated
from uniform distributions in the intervals of [0.04, 0.09],
[0.28, 0.45], [0.37, 1.18], [0.47, 0.88] and [0.18, 0.45],
respectively as shown in Table 4. 10 alternative operator levels
are considered, namely [10...19] on CM and [1...10] on CPS,

respectively. Unit transfer size is assumed and the output rate
is determined based on the bottleneck operation. By using
Table 1, the optimal production rate for product i with
configuration £ on CM is shown in Table 2. Furthermore, the
output rate (1/ Y.3-1 t;,) for product i on CPS in the case of a
one-worker rotating cell is constant regardless of operator
skills in this section. Consequently, the production rate
((1/ X5=1tio)*bji) for product i with configuration & on CPS
is calculated as shown in Table 3.

Table 1: Standard unit processing times
(Stier and Tummaluri, (2008))

Operations
Product 1 2 3 4 5
1 0.07 0.45 0.37 0.88 0.38
2 0.05 0.29 0.62 0.74 0.38
3 0.06 0.29 118 0.86 0.18
4 0.04 0.31 0.55 0.47 0.40
5 0.08 0.41 0.43 0.74 0.43
6 0.07 0.32 118 0.55 0.45
7 0.09 0.37 0.46 0.49 0.26
8 0.08 0.28 0.49 0.61 0.29
9 0.04 0.34 0.81 0.62 0.34
10 0.07 0.43 0.74 0.87 0.43

Table 2: The optimal production rate for product i
with configuration £ on CM

Configurations
Product 10 11 12 13 14 15 16 17 18 19

1 341 444 455 52 541 568 667 682 7.8 7.9
345 405 484 52 541 645 676 690 7.89 8.06
339 345 349 424 465 508 556 581 593 6.78
426 500 545 638 645 727 750 851 9.09 968
405 465 465 48 541 676 698 698 732 811
313 339 364 424 444 508 545 593 625 6.67
435 541 612 652 769 811 816 870 1020 10.81
408 492 612 656 690 714 816 820 984 1020
323 370 484 494 58 58 617 645 741 8.06
10 270 345 405 460 465 465 541 575 676 6.9
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Table 3: The production rate for product i
with configuration £ on CPS

Configurations
Product 1 2 3 4 5 6 7 8 9 10

1 047 093 140 18 233 279 326 372 419 465
048 096 144 192 240 283 337 38 433 481
039 078 117 156 195 233 272 311 350 3.89
056 113 169 226 28 339 39 452 508 565
048 096 144 191 239 287 335 383 431 478
039 078 117 15 195 233 272 311 350 3.89
060 120 180 240 299 359 419 479 539 59
057 114 171 229 286 343 400 457 514 571
047 093 140 18 233 279 326 372 419 465
10 039 079 118 157 197 236 276 315 354 3%
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4.1 The time available (/) in single-period

Generally, the value of £, i.e. the time available in a period,
is set to the constant (e.g. 2,400 minutes ( =5 days * 8 hours *



60 minutes )) during the experiment. However, it might not be
the constraint due to official holiday, periodic maintenance,
machine failure, and so on. We study cases in which the
parameter 4 ranged from 1,500 to 2,500 to confirm this
supposition without setup time in this subsection.

In the experiment, we use the demand of single-period as
shown in Table 4. The mean period demand for product i is
randomly generated from uniform distribution in the interval
of [2200, 7500]. Then, the period demand is summarized for
each period. The variation in period demand is (+/-2%-20%)
of the mean and in multiples of 50 units (Stier and Tummaluri,
2008). For example, Table 5 represents an example of the
optimal solution on the reconfigurable model for period 1 as
shown in Table 4. The optimal cell sizes are determined to be
18 and 19 operators for CM 1 and 2, § and 5 operators for CPS
1 and 2, respectively. The mathematical model also produces
loads on each CM and CPS, and guarantees to minimize not
only the total number of operators but also for the total time
required to produce all products. However, the sequence of
jobs on each cell has been determined randomly.

Table 4: Demand figures for single-period analysis

Products
Period 1 2 3 4 5 6 7 8 9 10
1 3,500 7,500 3,400 2,700 2,200 4,000 4500 2200 2,300 3,000

Table 5: The optimal solution of the reconfigurable model
for period 1 (h=1,600)

Cell Operators OpterlaI Products / Processing time Ope.ratlon
Type Range Solution Time
CM1 15-20 18 P1 P2 P8 P10

443 489 224 444 1,600
CM 2 15-20 19 P3 P6 P7 P9
502 397 416 285 1,600
CPS1 3-8 8 P2 P4 P5
428 597 575 1,600
CPS2 3-8 5 P2 P6
829 695 1,525
Total number of operators: 50 Total operation time: 6,325
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Figure 2: The first reconfigurable configuration of
the optimal solution in Table 5

Table 6 shows the optimal solution of both the traditional
model and the proposed model for the time available (%) in
single-period. Figure 3 shows the number of operators and
Figure 4 shows the ratio of the number of operators in
reconfigurable model, respectively.

For the total number of operators required, the proposed
model has a smaller number of operators than the traditional
model in the all cases. The gap between them is almost the
constant (i.e. 2 or 3 operators) regardless of the time available
(h) in a period as shown in Table 6. This means the proposed
model is more effective than the traditional model.

There is a huge configuration gap between 2,000 (%) and
2,100 (4) in the reconfigurable model. As the result of more
detailed simulation, it occurs between 2,007 (%) and 2,008 (%),
suddenly. This is because it comes up to the upper bound on
the total number of operators, i.e. alternative configurations in
CM and CPS on the time available of 2,008 (4).

Table 6: The optimal solution of each model on
the available time in a period (/)

Available Time (h)

Traditional 1500 1,600 1,700 1,800 1,900 2,000 2,100 2200 2300 2400 2500
CM1 18 18 18 18 18 18 18 19 18 19 15
CM2 19 19 16 19 15 15 13 19 19 16 19
CM3 18 15 15 10 12 10 10

Operators 55 52 49 47 45 43 41 38 37 35 34

Av.Op_time 1489 1572 1696 1,738 1859 1925 2061 2187 2209 2378 2436
Proposed
CM1 18 18 18 18 18 18 18 18 18 15 18
CM 2 15 19 15 19 19 19
CPS1 10 10 10 8 6 4 10 10 10 10 10
CPS2 10 3 4 10 8 6 8 4
Operators 53 50 47 45 43 41 38 36 34 33 32
Av.Op_time 1487 1569 1687 1,771 1842 1917 2031 2174 2292 2395 2364
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Figure 3: The number of operators
in the reconfigurable model
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Figure 4: The ratio of the number of operators
in reconfigurable model
4.2 The demand and variation in single-period

The demand values are set using a normal distribution
with mean values ranging from 2,500 to 4,500, and a standard
deviation ranging from 50 to 1,050 as shown in Table 7. The
value of 4, i.e. the time available in single-period, is set to the
constant (1,800) during the experiment.

For the total number of operators required, the proposed
model has a smaller number of operators than the traditional
model in the all cases. This means the proposed model is more
effective than the traditional model. On the other hand, when
the deviation is smaller, almost optimal solution is also smaller
with respect to the total number of operators in single-period
regardless of model types.

Especially, when deviation is smaller, the total number of
operators on CPS, i.e., CPS1 and CPS2, is also smaller, i.e. 13,
7, 19 for each demand in the proposed model. This means the
proposed model might have the potential to absorb variability
of demand and operators by not CM but CPS.

Table 7: The optimal solution of each model for
each demand (¢) and deviation (g) (N=1)

Demand
2,500 3,500 4,500
Traditional 50 350 700 1,050 | 50 350 700 1,050 [ 50 350 700 1,050
CM1 18 18 18 19 18 18 19 19 19 18 19 18
CM2 15 16 16 16 18 18 18 18 18 18 18 18
CM3 10 10 10 10 12 15 12 15
CM 4 10 10 11 10
Operators 33 34 34 35 46 46 47 47 59 61 60 61
Av.Op_time 1,774 1,769 1779 1754|1772 1800 1739 1758|1794 1737 1787 1764

Proposed
CM1 18 18 18 18 19 19 19 19 19 19 19 19
CM2 18 18 18 18 18 18 18 19
CPS1 10 10 10 10 7 8 8 8 10 10 10 10
CPS2 3 4 4 5 9 10 10 10

Operators 31 32 32 33 44 45 45 45 56 57 57 58
Av.Op time 1781 1733 1784 1701|1798 1,755 1775 1794|1782 1789 1,779 1,791

5. CONCLUSION

In this paper, a new mixed integer programming model
with 2-type cell production systems was proposed to overcome
some shortcomings of the traditional model for minimizing the
total number of operators in labour-intensive cells. Firstly, the
traditional model was redefined by new production rates.
Secondly, the new proposed model was solved by 2-phase
optimization problems. Furthermore, the new model was
compared with the traditional model by using numerical
experiments. As a result, this paper showed better cases in
which the proposed model could lead to fewer operators and
more stable operator assignments than the traditional model.
Even if the scale of the problem increases, the proposed model
will be able to handle the large-scale problems because 2-phase

optimization problems are not complex.

In future, we would like to solve the large-scale problems
including robot cells and propose a new mixed integer
programming model without phases in reconfigurable
production systems. Since the model without phases needs
more time to obtain optimal solutions than the 2-phase model,
we would like to confirm how it performs if problems get
larger, i.e. if there are more cells.
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