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Abstract. A large and growing body of literature has investigated on multi step ahead time series forecasting. 

Because no single model defeats the others for all circumstances, a hybrid strategy has drawn attention. In this 

paper we propose a hybrid strategy based on ensemble method to improve performance of multi-step ahead time 

series forecasting. Least absolute shrinkage and selection operator regression excludes non-significant forecasts 

and determines the weights to avoid over-fitting. Experiment results on 60 series from NN3 competition showed 

that the proposed method improved forecasting accuracy over single models and a simple mean ensemble strategy. 
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1. INTRODUCTION 
 

A large and growing body of literature has investigated 

on multi-step-ahead time series forecasting. Multi-step-

ahead forecasting has more practical implications and 

applications than one-step ahead forecasting; however, the 

increased uncertainty and lack of information make it 

difficult to generate multi-step-ahead forecasts. (Bao et al., 

2014).  

Traditionally, linear models such as Auto-regressive 

integrated moving average (ARIMA) and Exponential 

smoothing (ES) have been used for multi-step-ahead time 

series forecasting. However, Artificial neural network (ANN) 

and Support vector regression (SVR) have drawn attention in 

the time series forecasting community (Sapankevy and 

Sankar, 2009; Zhang, 2012) because the linear models have 

a lack of explanation power (De Gooijer and Hyndman, 

2006). However, there is no algorithm that is always suitable 

for all circumstances. Thus, a hybrid strategy that combines 

several models could be a good candidate. A considerable 

amount of literature has been published on the hybrid 

strategy on time series forecasting (Zhang, 2003; Yu et al., 

2005; Ren et al., 2015).  

An ensemble strategy is a well-known and traditional 

approach in the hybrid strategy. The main issue in the 

ensemble strategy is how to determine the weights of 

different forecasting models. Previous studies solve this 

problem by utilizing simple mean (Andrawis et al., 2011), 

optimization technique (Rather et al., 2015), forecasting 

error (Wichard, 2011) and forecasting model (Wang and Hu, 

2015). However, they have a limited ability to exclude 

forecasting models that degrade forecasting accuracy.  

We propose an ensemble strategy based on least 

absolute shrinkage and selection operator (LASSO) 

regression to determines the weights and exclude non-

significant forecasting models. The proposed method was 

compared to several benchmark models over 60 long time 

series from NN3 competition. 

 

2. METHODOLOGY 
2.1 ARIMA 

 

ARIMA describes the future value of time series as a 

linear function of past values and error terms (Box and 

Jenkins, 1976). An ARIMA(𝑝, 𝑑, 𝑞) model of degree of AR 

(𝑑), difference (𝑑) and MA (𝑞) is as follow: 



 

𝑥𝑡 = 𝜃0 + 𝜑1𝑥𝑡−1 + 𝜑2𝑥𝑡−2 +⋯+ 𝜑𝑝𝑥𝑡−𝑝 

+ 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞  
(1) 

where 𝑥𝑡  is the actual value obtained by differencing 𝑑 

times, 𝜀𝑡  is the random error at time 𝑡 , 𝑝  and 𝑞  are the 

numbers of auto-regressive and moving average terms in the 

ARIMA model, and 𝜑𝑖  (𝑖 = 1,… , 𝑝)  and 𝜃𝑗 (𝑗 =
1,… , 𝑞) are the model parameters to be estimated. 

 

2.2 LSSVR 
 

Least square support vector regression (LSSVR) is a 

variant of standard Support vector regression to reduce 

training time (Suykens et al., 1999). LSSVR solves a linear 

problem instead of a quadratic problem by modifying its 

constraints. 

Given the training set 𝐱𝑖, 𝑦𝑖  𝑖 = 1, … , 𝑁 with input 𝐱𝑖 
and output 𝑦𝑖 , LSSVR solves the following problem: 

 

min 𝐽(𝐰, 𝐞) =
1

2
𝐰𝑇𝐰+ 𝛾

1

2
∑ 𝑒𝑖

2

𝑁

𝑖=10

 (2) 

 

Subject to  

 

𝑦𝑖 = 𝐰
𝑇𝝓(𝐱𝑖) + 𝑏 + 𝑒𝑖 , 𝑖 = 1, … , 𝑁 (3) 

 

where 𝐰 is the weight vector, γ is the penalty parameter, 

𝐞 = (𝑒1, … , 𝑒𝑁)
𝑇 is the vector of the approximation error , 

𝝓(∙) is the nonlinear mapping function and 𝑏 is the bias 

term. The above problem is solved by introducing the 

Lagrangian multipliers 𝛼𝑖 
 

𝐿(𝐰, 𝐞, 𝛂, 𝑏) = 

𝐽(𝐰, 𝐞) −∑𝛼𝑖𝐰
𝑇𝝓(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖

𝑁

𝑖=1

 

 

(4) 

where 𝜶 = (𝛼1, … , 𝛼𝑁)
𝑇  is the vector of the Lagrangian 

multipliers. 

Then, the Karush-Kuhn-Tucker conditions are applied to 

optimize the Lagrangian.   
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After the elimination of 𝑤 and 𝑒𝑖, the equations could be 

transformed into  

 

[
𝑏
𝜶
] = [

0 𝐈𝑣
𝑇

𝐈𝑣
𝑇 𝛀+ 𝛾−1𝐈

] [
0
𝐲
] (6) 

 

where 𝐲 = [𝑦1, … , 𝑦𝑁],  𝐈𝑣 = [1, … ,1]𝑇 , and the Mercer 

condition has been applied to the matrix 𝛀 with 𝛺𝑘𝑚 =
𝜙(𝐱𝑘)

𝑇𝜙(𝐱𝑚), 𝑘,𝑚 = 1,… ,𝑁. Thus, the LSSVR becomes  

 

𝑦(𝐱) =∑𝛼𝑖𝐾(𝐱, 𝐱𝑖)

𝑁

𝑖=1

+ 𝑏 (7) 

 

2.3 LASSO regression  

 

LASSO regression aims to perform feature selection 

and regression simultaneously (Tibshirani, 1960). Lasso 

does that by introducing a penalty term in its objective 

function 

Given the training set 𝐱𝑖, 𝑦𝑖  𝑖 = 1, … , 𝑁 with input 𝐱𝑖 
and output 𝑦𝑖 . LASSO model can be written as follows: 

 

𝑦𝑖 = 𝛽0 + 𝜷1
𝑇𝐱𝑖 + 𝑒𝑖 (8) 

 

where 𝛽0  is the intercept and 𝜷1  is the slope. Let 𝜷 =
[𝛽0, 𝜷1

𝑇]𝑇 be the coefficient of model. The coefficient 𝜷 is 

computed by solving the following problem 

 

min
𝜷
{
1

2
∑(𝑦𝑖 − 𝛽0 − 𝜷1

𝑇𝐱𝑖)
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where 𝜆 is the regularization parameter that controls trade-

off between data-fitting term ∑ (𝑦𝑖 − 𝛽0 − 𝜷1
𝑇𝐱𝑖)

2𝑁
𝑖=1   and 

model complexity term ∥ 𝜷1 ∥1.  

 

 



 

2.3 Zhang’s hybrid model with LSSVR 
 

Zhang’s hybrid model (Zhang, 2003) assumes that time 

series 𝑥𝑡 is composed of the sum of a linear component and 

a nonlinear component 

 

𝑥𝑡 = 𝐿𝑡 + 𝑁𝑡 (10) 

 

where 𝐿𝑡 is the linear component and 𝑁𝑡 is the nonlinear 

component. First, fit ARIMA to model linear component and 

generate fitted series �̂�𝑡 and residuals 𝜀𝑡 = 𝑥𝑡 − �̂�𝑡. These 

residuals are considered to contain only the nonlinear 

relationship. Then, model the residuals using LSSVR to 

discover the nonlinear relationship 

 

𝜀𝑡 = 𝑓(𝜀𝑡−1, 𝜀𝑡−2, … , 𝜀𝑡−𝑛) + 𝑒𝑡 (11) 

 

where 𝑓 is the nonlinear function built by the LSSVR and 

𝑒𝑡 is the random. The forecast from (11) is considered as �̂�𝑡. 
The combined forecast is given by 

 

�̂�𝑡 = �̂�𝑡 + �̂�𝑡 (12) 

 

2.4 Proposed method   

 

In the ensemble strategy, a main problem is determining 

the weights of forecasts. Suppose 𝐿 forecasts �̂�𝑡
1, �̂�𝑡

2, … , �̂�𝑡
𝐿 

are given. The general form of the ensemble strategy can be 

expressed as follows: 

 

                                            
1Available at  http://www.neural-forecasting-competition.com/NN3/ 

�̂�𝑡 =∑𝑤𝑗 �̂�𝑡
𝑗

𝐿

𝑗=1

 (13) 

 

where 𝑤𝑗  is the assigned weight of forecasts �̂�𝑡
𝑗
.  

We applied LASSO regression to find the weight 𝑤𝑗 . 

LASSO regression selects the weights that avoid overfitting 

by excluding non-significant forecasts. If one forecasting 

model is significantly outperformed by the others, LASSO 

regression would exclude it from the final forecast.  

The figure 1 presents the proposed method.  

 

Step1: Build ARIMA, LSSVR and Zhang’s hybrid 

model with LSSVR in recursive strategy (Taieb 

and Atiya, 2016) to generate multi-step ahead 

forecast.  

 

Step2: Learn LASSO regression to determine the 

weights in ensemble strategy based on the fitted 

values  

 

Only one-step-ahead model is trained for each 

forecasting model because the proposed method adopts the 

recursive strategy for multi-step-ahead forecasting. Thus 

LASSO regression is learned based on one-step-ahead fitted 

values.  

 

3. EXPERIMENT 
3.1 The data description 

 

The NN3 competition dataset 1  was selected for the 

evaluation of the proposed method. It was drawn from  

Figure 1: The procedure of the proposed method 



 

business area with monthly frequency and positive 

observations. The most of series have seasonal and trend 

behavior and high-level of noise. Among 111 time series, 

only 60 long series where the training length of series is more 

than 84 were used to ensure enough training examples for the 

learning of the proposed method. Our objective is to forecast 

next 18 months based on the given history. 

 

3.2 Performance evaluation  

 

We applied two error measures to evaluate the 

performance of the proposed method: symmetric mean 

absolute percentage error (SMAPE) and mean absolute 

scaled error (MASE); both error measures are scale-

independent.  
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where �̂�𝑁+ℎ
𝑚  is the ℎ-step ahead forecast for time series 𝑚, 

𝑥𝑁+ℎ
𝑚  is the actual value for time series 𝑚 , 𝐻  is the 

prediction horizon (𝐻 = 18) and 𝑀 is the number of time 

series (𝑀 = 60). 
 

3.3 Model learning 
 

Partial auto-correlation was adopted for input selection 

method because of its simplicity. Considering that the data 

set is monthly, we set the maximum number of lags to 12. 

An automatic model selection procedure in forecast 

package in R (Hyndman and Khandakar, 2008) was chosen 

to fit ARIMA model. It is based on statistical tests and an 

information criterion. The RBF kernel function was chosen 

for LSSVR. The hyper-parameters of LSSVR were selected 

by Nelder-Mead simplex algorithm (Nelder and Mead, 1965) 

to minimize mean squared error of 10-fold cross validation. 

The starting points of simplex were determined by Coupled 

simulated annealing. The regularization parameter λ  for 

LASSO regression was decided by minimizing mean 

squared error of 10-fold cross validation.  

The proposed method was compared to single models 

and the simple average of them. The single models consisted 

of LSSVR, ARIMA and Zhang’s hybrid model.  

 

The forecasting 

model 
The number of selected series 

ARIMA 37 

LSSVR 47 

Zhang’s hybrid 50 

 

3.4 Result 
 

Table 1 provides the performance of the forecasting 

models based on the accuracy measures and forecasting 

horizon. Zhang’s hybrid model showed the lowest error 

among the single models on both SMAPE and MASE. The 

simple mean ensemble strategy only improved SMAPE. In 

contrast, the proposed method succeeded to reduce both 

SMAPE and MASE. The improvement of the proposed 

method over the best single model, Zhang’s hybrid, on 

SMAPE (17.20 − 15.12)/17.20 =  12.09%  was larger 

than the one on MASE (1.62 − 1.59)/1.62 = 1.85%. This 

Forecasting model 
Forecasting horizon ℎ Average 

1 6 12 18 1-6 7-12 13-18 1-18 

SMAPE 

LSSVR 10.52 17.38 23.90 25.86 12.99 17.94 21.24 17.39 

ARIMA 12.78 23.11 23.29 20.50 17.47 19.82 19.56 18.95 

Zhang’s hybrid 9.77 20.99 21.46 19.34 15.14 18.20 18.25 17.20 

Simple mean 9.94 19.23 22.61 19.95 14.15 17.96 18.16 16.76 

Proposed method 10.55 16.81 18.26 18.42 12.99 15.65 16.72 15.12 

MASE 

LSSVR 0.64 2.50 16.88 4.76 1.37 5.48 3.29 3.38 

ARIMA 0.75 1.62 1.76 2.65 1.18 1.83 2.16 1.72 

Zhang’s hybrid  0.61 1.50 1.63 2.59 1.07 1.72 2.08 1.62 

Simple mean 0.62 1.62 6.66 3.16 1.10 2.88 2.29 2.09 

Proposed method 0.66 1.50 1.57 2.58 1.03 1.69 2.06 1.59 

Table 1: Experiment result of forecasting models 

 

 

Table 2: The number of selected series  



 

results could be explained by the following analysis on the 

weights in the proposed method.  

Table 2 summarizes the weights of the single models in 

the proposed method. The first column indicates the 

forecasting model. The number of the series of having the 

non-zero weight was provided in the second column. We 

found that the trend in the weights was related to only 

SMAPE, not MASE. In other words, a chance to have the 

non-zero weight was only decreasing in SMAPE. ARIMA, 

for example, showed the worst performance on SMAPE; it 

had the lowest chance to be selected by LASSO regression. 

Thus, the improvement of the proposed method was larger 

on SMAPE than the one on MASE. 

 

4. CONCLUSION 
 

In this paper, we proposed ensemble strategy based on 

LASSO regression to improve forecasting performance of 

multi-step-ahead time series forecasting. The experiment on 

60 time series from NN3 competition showed that the 

proposed method improved both SMAPE and MASE over 

the benchmark models by excluding the non-significant 

forecast and determining the weights that avoid over-fitting. 

The major limitation of the proposed method is that it is 

based on only general supervised learning theory. It doesn’t 

consider the property of time series. Thus, future research 

should be undertaken to incorporate property of time series 

into the proposed method. One way to do that is applying 

decomposition method such as Seasonal trend 

decomposition using Loess (Cleveland et al., 1990) and 

Empirical mode decomposition (Huang et al., 1996) to deal 

with trend and seasonality.  
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