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Abstract. The connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system consists nm  components, and it is failed 

if and only if there exists at least one of a (1,2)-matrix and a (2,1)-matrix. This system can be applied to various 

systems in practice e.g., the supervision system. Several calculation methods have been proposed to obtain the 

exact reliability of the connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system. However, these methods have the 

weak point that their calculating times increase with system size. Hence, the evaluation of approximations for the 

system reliability, which can be calculate in a practical calculating time, is important. We derive new upper and 

lower bounds for evaluating the reliability of a connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system for the i.i.d. 

case. Then, we show some numerical examples in order to confirm the efficiency of the proposed approximate 

values. 
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1. INTRODUCTION 
 

A linear consecutive-k-out-of-n:F system consists of n 

components arranged in a line. The system fails if and only if 

at least k consecutive components fail. It was firstly introduced 

by Kontolen (1980) and has been extensively studied by Chang 

et al. (1995), Kuo and Zuo (2002) and Chao et al. (1995) etc. 

Furthermore, in recent years, the studies have been reviewed 

by Eryilmaz (2010) and Triantafyllou (2015). A linear 

connected-X-out-of-(m,n):F lattice system is a two-

dimensional version of the linear consecutive-k-out-of-n:F 

system (Boehme et al. (1992)). The system fails if and only if 
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at least one subset of connected failed components occurs 

which includes failed components connected in the meaning of 

“connected-X”. For example, a connected-(1,2)-or-(2,1)-out-

of-(m,n):F lattice system consists of nm    components 

arranged in m rows by n columns. It fails if and only if there 

exists at least one of a (1,2)-matrix and a (2,1)-matrix (see Fig. 

1). This system can be applied to various systems in practice 

e.g., the supervision system. Several calculation methods have 

been proposed to obtain the exact reliability of the connected-

(1,2)-or-(2,1)-out-of-(m,n):F lattice system (Yamamoto et al. 

(2007)). However, these methods have the weak point that their 

calculating times increase with system size. Hence, the 

evaluation of approximations for the system reliability, which 

can be calculate in a practical calculating time, is important. 

 Many studies have given upper and lower bounds for a 

two-dimensional system. Yamamoto and Miyakawa (1995), 

Makinowski and Preuss (1996) and Boutsikas and Koutras 

(2000) proposed bounds for a connected-(r,s)-out-of-(m,n):F 

lattice system in which the components are ordered like the 

elements of an (m,n)-matrix so that the system fails if at least 

one connected (r,s)-submatrix fails. However, as far as we 

know, the only literature that can calculate upper and lower 

bounds for a connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice 

system is Yamamoto (1996). Note that, in nature, Yamamoto 

(1996) gives upper and lower bounds for the reliability of the 

connected-X-out-of-(m,n):F lattice system, which is more 

general system than a connected-(1,2)-or-(2,1)-out-of-(m,n):F 

lattice system. 

 The aim of this paper is to derive new upper and lower 

bounds for evaluating the reliability of a connected-(1,2)-or-

(2,1)-out-of-(m,n):F lattice system for the i.i.d. case. 

Additionally, we perform numerical examples in order to 

compare with the existing bounds (Yamamoto (1996)). In 

Section 2, we clarify the system size whose reliability can be 

obtained by explicit solution technique and present the existing 

upper and lower bounds. In Section 3, we propose new 

formulas for upper and lower bounds. In Section 4, we show 

numerical examples. In Section 5, we discuss our conclusions 

and future work. 

 

 

2. PREVIOUS STUDIES 
 

In this section, we clarify the system size whose reliability 

can be obtained by explicit solution technique. Furthermore, 

we apply Yamamoto (1996)'s bounds to the connected-(1,2)-

or-(2,1)-out-of-(m,n):F lattice system and confirm the efficacy.  

In this paper, we denote several notations. Let p be the 

reliability of each component and q be the failure probability 

of each component, where 1 qp  . We assume that all 

component are mutually s-independent and have the same 

component reliability. For mi ,,2,1    and nj ,,2,1   , 

we define the indicator variable ijx  by 
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where the component ),( ji  means the component located on 

i  th row and j  th column. For nj ,,2,1   , let the vector 

),,,( 21 mjjjj xxx x  be the state vector. 

 

2.1 Explicit Solution 
 

 If the system size for evaluation is not large, by using 

explicit solutions, little calculating time is required. In this 

subsection, we present the calculation method based on 

Markov chain proposed by Nakamura et al. (2016). Note that, 

in nature, the calculation method proposed by Nakamura et al. 

(2016) evaluate the reliability of a toroidal connected-(1,2)-or-

(2,1)-out-of-(m,n):F lattice system. Here we apply it to linear 

connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system and 

investigate the calculating time. Hence, we rewrite the 

calculation method in order to evaluate the reliability of the 

linear connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system. 

Next, we show a rewritten calculation method. It is 

employed to calculate the proposed upper and lower bounds in 

Section 3. For ma 2,,2,1    and mb 2,,2,1   , the 
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Figure 1: Example of a connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice 

system failure. 



 

 

transition probability of the Markov chain is given by 
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 ),( 1jj xx  means an indicator function, which takes 1 when 

the system failure pattern does not occur in either j th column, 

1j th column or the two columns straddled j th column and 

1j  th column. From Eqs. (2) and (3), the transition 

probability matrix is denoted as follows: 

 
 

mm
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Then, the reliability of the connected-(1,2)-or-(2,1)-out-of-

(m,n):F lattice system is 

 
  ,),( 0πMu

nTnmR   (5) 

where   12

0 0,,0,1 
mT

Rπ    is the initial probability 

vector and   121,,1,1 
mT

Ru    is the probability vector, 

which sums up whole reliabilities of functioning systems. 

 We present numerical examples of the explicit solutions 

(Eq. (5)). The calculating time is estimated with a Windows 10 

Intel Core i5 3.20GHz 4GB, and MATLAB R2016a. The 

results for systems fixed m are shown in Table1, and the results 

for systems fixed n are shown in Table2. Table1 shows that 

when the number of rows is large, little calculating time is 

required. On the other hand, Table 2 shows that when the 

number of column is large, much calculating time is required 

for exact system reliability. However, since parameter m and 

parameter n are interchangeable, we can also calculate the 

reliability of the system with large m. Thus, this method based 

on Markov chain is effective when either large m or large n. 

However, this method has the weak point that its calculating 

time increases in the case of that both parameter m and 

parameter n are large. The recursive equation proposed by 

Yamamoto et al. (2007) has similar results to the method based 

on Markov chain proposed by Nakamura et al. (2016). 

Although some explicit solutions have been proposed, their 

calculating times increase as the system size become large. 

Hence, the evaluation of upper and lower bounds for the 

system reliability, which can be calculate in a practical 

calculating time, is important. Therefore, we consider upper 

and lower bounds in this paper. 

 

 

2.2 Upper and Lower Bounds 

In this subsection, we present the upper and lower bounds 

proposed by Yamamoto (1996). Note that, in nature, 

Yamamoto (1996) gives upper and lower bounds for the 

reliability of the connected-X-out-of-(m,n):F lattice system. 

In this subsection, we calculate the upper and lower 

bounds for the reliability of the connected-(1,2)-or-(2,1)-out-

of-(m,n):F lattice system. We present upper and lower bounds 

for the reliability of connected-X-out-of-(m,n):F lattice system. 

For h...,2,1 , let X  be one of the failure patterns, and X 

means 1X   or 2X   or…or hX  . Without loss of generality, 

we assume that a failure pattern X  does not include others 

for all  . For h...,2,1 , let r  be the number of rows of 

the smallest rectangle which encloses the failure pattern X , 

and let s  be the number of columns of the smallest rectangle. 

For 1,,2,1 min  rmi    and 1,,2,1 min  snj   ,    is 

written as 

 
)1)(1( min  rmji , (6) 

and   is defined by random variable that takes 0 when the 

failure pattern X  in the rectangle with component ),( ji  as 

its upper left corner occurs, and 1 otherwise. Here   

performs one-to-one correspondence to ),( ji  and we need to 

Table 1: Calculating time when m  1000.  

 

Table 2: Calculating time when n  12. 

 

m 8 … 12 13 14 15 16 17 18

Calculating time (sec.) 0.041 … 0.271 0.663 1.867 5.259 15.143 44.888 148.566

n 1000 4000 16000 64000 256000 1024000 4096000

Calculating time (sec.) 1.855 1.902 1.943 2.05 2.072 2.129 2.196



 

 

express ),( ji  in nature. However, for the sake of simplicity 

expression, we express   hereinafter. Let B  be the event 

that all component lying adjacent to the maxmax sr   rectangle 

with component ),( ji  as its upper left corner. Namely,  
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where )1)(1( min  rmji   for 1,,2,1 min  rmi   

and 1,,2,1 min  snj  . By using the above notations, the 

lower bound YLB   and the upper bound YUB  for the 

connected-X-out-of-(m,n):F lattice system are obtained as 

follows: 
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 B  is defined as Eq. (7) in order to obtain the upper bounds 

for the general connected-X-out-of-(m,n):F lattice system. 

When the failure patterns X is given, if we select the event B   

so that the event A   and the event 

 ccc AAAB 121    are independent and the number of 

components composed of the event B   is smallest, we can 

obtain the better upper bound. 

 The lower and upper bounds of Eqs. (8) and (9) are 

obtained by ignoring the dependency of the minimal cut sets. 

Hence, since the connected-(1,2)-or-(2,1)-out-of-(m,n):F 

lattice system has more cut sets than any other 2-dimensional 

system relatively, we estimate that the errors between the exact 

system reliability and bounds tend to be large. 

 

 

 3. PROPOSAL OF UPPER AND LOWER BOUNDS 
 

 In this section, for the connected-(1,2)-or-(2,1)-out-of-

(m,n):F lattice system whose bounds tend to increase the error, 

by extending ideas of Yamamoto and Miyakawa (1995) or 

Malinowski and Preuss (1996), we propose new formulas for 

upper and lower bounds. The numerical examples in the 

subsection 2.1 shows the calculation method of Eq. (5) is not 

effective in the case that both parameter m and parameter n are 

large. In other words, we can obtain the reliability of the 

connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system when 

either large m or large n in an efficient way. In this paper, we 

regard the system which can be obtained in a short time as a 

part of the connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice 

system and calculate the bounds by using it. If we can reduce 

the number of times that we ignore the dependency of the 

minimal cut sets, we obtain the ls which are more useful than 

the exacting bounds. Hence, we propose new formulas for 

upper and lower bounds. 

 First, we define the following notations. Let ),(sub nkR  

be the reliability of the connected-(1,2)-or-(2,1)-out-of-(k,n):F 

lattice subsystem. Here k means the number of rows of the 

subsystem, namely the division unit, and mod (a,b) represents 

the remainder when a is divided by b. By using the above 

notations, the lower bound )(kLB   and the upper bound 

)(kUB  for the connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice 

system are obtained as the following theorem: 
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where )1,1mod(  kkml ( 10  kl ) and when 0l , 

1),0(sub nR . 

 

(b) ),(),()( subsub nlRnkRkUB k

m











, (11) 

where ),mod( kml   ( 10  kl  ) and when 0l  , 

1),0(sub nR . Theorems (a) and (b) are derived from ideas of 

Yamamoto and Miyakawa (1995) or Malinowski and Preuss 

(1996). The proof of Theorems are omitted. 

As parameter k increases, more calculating time is 

required, and, on the other hand, the errors between the exact 

system reliability and bounds are smaller. Hence, taking into 

account the subsystem in Theorem (a) and (b), we should try 

to balance the quality of the bounds and the computational 

complexity of them. Namely, this is the trade-off problem. 

 

 

 

 

4. NUMERICAL EXAMPLES 
 

In this section, we perform numerical examples in order 



 

 

to compare with the existing bounds proposed by Yamamoto 

(1996). 

 In Table 3, we present, for a various of choices of m, n, 

p,  our lower bounds )(kLB  (for 16,12,8k ) [calculated 

by using Eq. (10)] and our upper bounds )(kUB   (for 

16,12,8k ) [calculated by using Eq. (11)]. Column labeled 

as Exact contains the exact value of the reliability of the 

connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system, given 

by Eq. (5). We compare these bounds with the lower bound 

derived by Yamamoto (1996), labeled YLB   and the upper 

bound derived by Yamamoto (1996), labeled YUB  . As 

previously described, if we select the event B  in Eq. (9) well, 

we can obtain the better upper bound. By using the optimal 

B , the upper bound for the connected-(1,2)-or-(2,1)-out-of-

(m,n):F lattice system is given as follow: 

Table 3: Comparison of the lower and upper bounds. 

 

 

Figure 2: The difference between the exact system reliability and lower/upper bounds in the connected-(1,2)-or-(2,1)-out-of-(15,15):F lattice system 

m n p LB Y LB (8) LB (12) LB (16) Exact UB Y UB (8) UB (12) UB (16)

10 10 0.90 0.16381 0.21231 ― ― 0.23185 0.30014 0.24724 ― ―

10 10 0.95 0.63727 0.65531 ― ― 0.67016 0.69148 0.68338 ― ―

10 10 0.99 0.98216 0.98173 ― ― 0.98262 0.98284 0.98355 ― ―

15 15 0.90 0.01468 0.02956 0.02956 ― 0.03387 0.06400 0.03728 0.03728 ―

15 15 0.95 0.34948 0.38115 0.38115 ― 0.39462 0.42646 0.40631 0.40631 ―

15 15 0.99 0.95887 0.95860 0.95860 ― 0.95995 0.96050 0.96131 0.96131 ―

30 30 0.95 0.01284 0.01849 0.01870 0.02009 ― 0.03033 0.02569 0.02424 0.02287

30 30 0.98 0.49851 0.49394 0.50552 0.51140 ― 0.52825 0.53431 0.52860 0.52295

30 30 0.99 0.84029 0.83945 0.83948 0.84192 ― 0.84651 0.85157 0.84916 0.84676

50 50 0.98 0.17233 0.13920 0.14476 0.14762 ― 0.16621 0.17427 0.16815 0.16517

50 50 0.99 0.61261 0.60313 0.60907 0.61206 ― 0.62569 0.63897 0.63296 0.62998
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For each system, it took about less than one second to 

calculate each of YLB , )8(LB , )12(LB , YUB , )8(UB  and 

)12(UB  with a Windows 10 Intel Core i5 3.20 GHz 4 GB, and 

MATLAB R2016a. On the other hand, )16(LB  and )16(UB  

require approximately ten seconds as calculating time. 

Table 3 shows that there are no best upper and lower 

bounds for all system. The proposed bounds tend to be better 

when the system size is small and component reliability p is 

not nearly equal to one. This tendency is common between 

proposed upper and lower bounds. Next, we investigate the 

relationship between the component reliability and the 

difference between the exact system reliability and 

upper/lower bounds. Fig. 2 presents Upper/Lower Bound  

Exact Reliability as component reliability p for the connected-

(1,2)-or-(2,1)-out-of-(15,15):F lattice system. From Fig. 2, the 

vicinity of 95.0p  , proposed bounds ( )12(UB   and 

)12(LB ) are better. However, if the component reliability p is 

very high (close to one), then the existing bounds ( YUB  and 

YLB  ) are better. Furthermore, Fig. 2 shows the vicinity of 

15.0p , YUB  provides a bad value. 

 

 

5. CONCLUSION 

 

 In this paper, we proposed new upper and lower bounds 

for evaluating the reliability of a connected-(1,2)-or-(2,1)-out-

of-(m,n):F lattice system for the i.i.d. case. Then, we focus on 

the size of subsystem calculated easily. First, we clarify the 

system size which we can calculate within a set time by using 

Markov-based methods proposed by Nakamura et al. (2016). 

Next, we proposed new bounds based on the subsystem 

calculated by the Markov-based methods and perform 

numerical examples in order to compare with the existing 

bounds proposed by Yamamoto (1996). The result of the 

experiment shows that there are no best bounds for any system, 

and in the case that the system size is small and component 

reliability p is not nearly equal to one, the proposed bounds 

tend to be better. However, as parameter k increases, the errors 

between the exact system reliability and bounds are smaller, 

though more calculating time is required. Hence, the proposed 

methods give better bounds by making maximal use of 

available calculating time. Most pervious bounds are 

compared based on the error. Taking account into the error and 

calculating time, we will derive improved bounds for a 

connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system in the 

future. 
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