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Abstract. The connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system consists mxn components, and it is failed
if and only if there exists at least one of a (1,2)-matrix and a (2,1)-matrix. This system can be applied to various
systems in practice e.g., the supervision system. Several calculation methods have been proposed to obtain the
exact reliability of the connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system. However, these methods have the
weak point that their calculating times increase with system size. Hence, the evaluation of approximations for the
system reliability, which can be calculate in a practical calculating time, is important. We derive new upper and
lower bounds for evaluating the reliability of a connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system for the i.i.d.
case. Then, we show some numerical examples in order to confirm the efficiency of the proposed approximate
values.
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1. INTRODUCTION et al. (1995), Kuo and Zuo (2002) and Chao et al. (1995) etc.

Furthermore, in recent years, the studies have been reviewed

A linear consecutive-k-out-of-n:F system consists of »
components arranged in a line. The system fails if and only if
at least k consecutive components fail. It was firstly introduced
by Kontolen (1980) and has been extensively studied by Chang

by Eryilmaz (2010) and Triantafyllou (2015). A linear

connected-X-out-of-(m,n):F lattice system is a two-
dimensional version of the linear consecutive-k-out-of-n:F

system (Boehme ef al. (1992)). The system fails if and only if
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at least one subset of connected failed components occurs
which includes failed components connected in the meaning of
“connected-X”. For example, a connected-(1,2)-or-(2,1)-out-
of-(m,n):F lattice system consists of mxn components
arranged in m rows by n columns. It fails if and only if there
exists at least one of a (1,2)-matrix and a (2,1)-matrix (see Fig.
1). This system can be applied to various systems in practice
e.g., the supervision system. Several calculation methods have
been proposed to obtain the exact reliability of the connected-
(1,2)-or-(2,1)-out-of-(m,n):F lattice system (Yamamoto et al.
(2007)). However, these methods have the weak point that their
calculating times increase with system size. Hence, the
evaluation of approximations for the system reliability, which
can be calculate in a practical calculating time, is important.

Many studies have given upper and lower bounds for a
two-dimensional system. Yamamoto and Miyakawa (1995),
Makinowski and Preuss (1996) and Boutsikas and Koutras
(2000) proposed bounds for a connected-(7,s)-out-of-(m,n):F
lattice system in which the components are ordered like the
elements of an (m,n)-matrix so that the system fails if at least
one connected (r,s)-submatrix fails. However, as far as we
know, the only literature that can calculate upper and lower
bounds for a connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice
system is Yamamoto (1996). Note that, in nature, Yamamoto
(1996) gives upper and lower bounds for the reliability of the
connected-X-out-of-(m,n):F lattice system, which is more
general system than a connected-(1,2)-or-(2,1)-out-of-(m,n):F
lattice system.

The aim of this paper is to derive new upper and lower
bounds for evaluating the reliability of a connected-(1,2)-or-
(2,1)-out-of-(m,n):F
Additionally, we perform numerical examples in order to

lattice system for the i.i.d. case.
compare with the existing bounds (Yamamoto (1996)). In
Section 2, we clarify the system size whose reliability can be
obtained by explicit solution technique and present the existing
upper and lower bounds. In Section 3, we propose new
formulas for upper and lower bounds. In Section 4, we show
numerical examples. In Section 5, we discuss our conclusions
and future work.

2. PREVIOUS STUDIES

In this section, we clarify the system size whose reliability
can be obtained by explicit solution technique. Furthermore,
we apply Yamamoto (1996)'s bounds to the connected-(1,2)-

column

j n atleasta(1,2)-
9’ matrix ora (2,1)-
matrix fail

row OQO::

OO
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' : Failed component

Figure 1: Example of a connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice
system failure.

or-(2,1)-out-of-(m,n):F lattice system and confirm the efficacy.

In this paper, we denote several notations. Let p be the
reliability of each component and ¢ be the failure probability
of each component, where p+0=1. We assume that all
component are mutually s-independent and have the same
component reliability. For i=12,...,m and j=12,...,n,
we define the indicator variable x; by

o
X; =
0,

where the component (i, j) means the component located on
i th row and j th column. For j=12,...,n, let the vector
Xj = (X, Xpj,---, Xy ) be the state vector.

if thecomponent(i, j) is functionirg,
if thecomponent(i, j) hasfailed,

@

2.1 Explicit Solution

If the system size for evaluation is not large, by using
explicit solutions, little calculating time is required. In this
subsection, we present the calculation method based on
Markov chain proposed by Nakamura et al. (2016). Note that,
in nature, the calculation method proposed by Nakamura et al.
(2016) evaluate the reliability of a toroidal connected-(1,2)-or-
(2,1)-out-of-(m,n):F lattice system. Here we apply it to linear
connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system and
investigate the calculating time. Hence, we rewrite the
calculation method in order to evaluate the reliability of the
linear connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system.

Next, we show a rewritten calculation method. It is
employed to calculate the proposed upper and lower bounds in

Section 3. For a=12,...,2" and b=12,...,2" , the



transition probability of the Markov chain is given by

My, =p™“xq“x HX;,X,4) 5 (2)

m
where o= Z X, » and
k=1

¢(Xj lXj—]_) = ﬁ(l_ X - Xi,j—l)
. 3)
X H(l_ Xi X ) =X 50 Xig )

#(x i1 X j_1) means an indicator function, which takes 1 when
the system failure pattern does not occur in either j th column,
j —1th column or the two columns straddled j th column and
j—1th column. From Egs. (2) and (3), the transition
probability matrix is denoted as follows:

M=(m, )R . (4)

Then, the reliability of the connected-(1,2)-or-(2,1)-out-of-
(m,n):F lattice system is

R(M,n)=u"(M")x,, (5)

where @, =(10,---,0) eR*™* s the initial probability
vector and u:(ZLL--~,1)T eR?™ s the probability vector,
which sums up whole reliabilities of functioning systems.

We present numerical examples of the explicit solutions
(Eq. (5)). The calculating time is estimated with a Windows 10
Intel Core i5 3.20GHz 4GB, and MATLAB R2016a. The
results for systems fixed m are shown in Tablel, and the results
for systems fixed n are shown in Table2. Tablel shows that
when the number of rows is large, little calculating time is
required. On the other hand, Table 2 shows that when the
number of column is large, much calculating time is required
for exact system reliability. However, since parameter m and
parameter n are interchangeable, we can also calculate the
reliability of the system with large m. Thus, this method based

on Markov chain is effective when either large m or large n.
However, this method has the weak point that its calculating
time increases in the case of that both parameter m and
parameter n are large. The recursive equation proposed by
Yamamoto et al. (2007) has similar results to the method based
on Markov chain proposed by Nakamura et al. (2016).
Although some explicit solutions have been proposed, their
calculating times increase as the system size become large.
Hence, the evaluation of upper and lower bounds for the
system reliability, which can be calculate in a practical
calculating time, is important. Therefore, we consider upper
and lower bounds in this paper.

2.2 Upper and Lower Bounds

In this subsection, we present the upper and lower bounds
proposed by Yamamoto (1996). Note that, in nature,
Yamamoto (1996) gives upper and lower bounds for the
reliability of the connected-X-out-of-(m,n):F lattice system.

In this subsection, we calculate the upper and lower
bounds for the reliability of the connected-(1,2)-or-(2,1)-out-
of-(m,n):F lattice system. We present upper and lower bounds
for the reliability of connected-X-out-of-(m,n):F lattice system.
For 6=12.,h,let X, beone ofthe failure patterns, and X
means X, or X, or..or X,. Without loss of generality,
we assume that a failure pattern X, does not include others
forall 6.For 6=12.,h,let r, be the number of rows of
the smallest rectangle which encloses the failure pattern X, ,
andlet s, be the number of columns of the smallest rectangle.
For i=12,...m-r, +1 and j=12...,n-s, +1, 7 is
written as

r=i+(j-D(m-r, +1), (6)

and y,, is defined by random variable that takes 0 when the
failure pattern X, inthe rectangle with component (i, j) as
its upper left corner occurs, and 1 otherwise. Here =
performs one-to-one correspondence to (i, j) and we need to

Table 1: Calculating time when m = 1000.

m 8l - 12 13 14 15 16 17 18
Calculating time (sec.) 0.041 0.271 0.663 1.867 5259| 15.143| 44.888| 148.566
Table 2: Calculating time when n = 12.
n 1000 4000 16000( 64000 256000 1024000| 4096000
Calculating time (sec.) 1.855 1.902 1.943 2.05 2.072 2.129 2.196




express 7(i, j) innature. However, for the sake of simplicity
expression, we express ¢ hereinafter. Let B, be the event

that all component lying adjacent to the r,, xS, rectangle

max
with component (i, j) as its upper left corner. Namely,

RENE R

where z=i+(j-D(m-r,, +1) for i=12..m-r, +1
and j=12,...,n—s,, +1. By using the above notations, the
lower bound LB, and the upper bound UB, for the
connected-X-out-of-(m,n):F lattice system are obtained as

follows:
M-y +1n—si +1 k
LB, = [T TTE-Priy,. =03, 8)
i=1 j=1  6=1
M—Tpin +1N=8;, +1
i=1 j=1

k
where A = U{}/gr =0}.
6-1

B, is defined as Eq. (7) in order to obtain the upper bounds
for the general connected-X-out-of-(m,n):F lattice system.
When the failure patterns X is given, if we select the event B,

so that the  event A and  the  event
B, N (Af NAN---N Af,l) are independent and the number of
components composed of the event B, is smallest, we can
obtain the better upper bound.

The lower and upper bounds of Egs. (8) and (9) are
obtained by ignoring the dependency of the minimal cut sets.
connected-(1,2)-or-(2,1)-out-of-(m,n):F
lattice system has more cut sets than any other 2-dimensional

Hence, since the
system relatively, we estimate that the errors between the exact
system reliability and bounds tend to be large.

3. PROPOSAL OF UPPER AND LOWER BOUNDS

In this section, for the connected-(1,2)-or-(2,1)-out-of-
(m,n):F lattice system whose bounds tend to increase the error,
by extending ideas of Yamamoto and Miyakawa (1995) or
Malinowski and Preuss (1996), we propose new formulas for
upper and lower bounds. The numerical examples in the
subsection 2.1 shows the calculation method of Eq. (5) is not

effective in the case that both parameter m and parameter » are
large. In other words, we can obtain the reliability of the
connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system when
either large m or large » in an efficient way. In this paper, we
regard the system which can be obtained in a short time as a
part of the connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice
system and calculate the bounds by using it. If we can reduce
the number of times that we ignore the dependency of the
minimal cut sets, we obtain the Is which are more useful than
the exacting bounds. Hence, we propose new formulas for
upper and lower bounds.

First, we define the following notations. Let R, (k,n)
be the reliability of the connected-(1,2)-or-(2,1)-out-of-(k,n):F
lattice subsystem. Here £ means the number of rows of the
subsystem, namely the division unit, and mod (a,b) represents
the remainder when «a is divided by b. By using the above
notations, the lower bound LB(k) and the upper bound
UB(k) for the connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice
system are obtained as the following theorem:

Theorem

m—k+1 1

(a) LB(k>=Rsub(k.n){ = xRyp(1,1) (10)

where |=mod(m-k+1,k-1)(0<I<k-1)andwhen =0,
Rsub(ol n) =1.

m
(b) UB(K) =R, (K, n)M xRy, (1,0), 1n
where |=mod(m,k) ( 0<I<k-1) and when [=0 ,
R, (0,n) =1. Theorems (a) and (b) are derived from ideas of
Yamamoto and Miyakawa (1995) or Malinowski and Preuss
(1996). The proof of Theorems are omitted.

As parameter k increases, more calculating time is
required, and, on the other hand, the errors between the exact
system reliability and bounds are smaller. Hence, taking into
account the subsystem in Theorem (a) and (b), we should try
to balance the quality of the bounds and the computational
complexity of them. Namely, this is the trade-off problem.

4. NUMERICAL EXAMPLES

In this section, we perform numerical examples in order



to compare with the existing bounds proposed by Yamamoto
(1996).

In Table 3, we present, for a various of choices of m, n,
p, our lower bounds LB(k) (for k=8,12,16) [calculated
by using Eq. (10)] and our upper bounds UB(k) (for
k =8,12,16 ) [calculated by using Eq. (11)]. Column labeled
as Exact contains the exact value of the reliability of the
connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system, given
by Eq. (5). We compare these bounds with the lower bound

bound derived by Yamamoto (1996), labeled UB, . As
previously described, if we select the event B, in Eq. (9) well,
we can obtain the better upper bound. By using the optimal
B, , the upper bound for the connected-(1,2)-or-(2,1)-out-of-
(m,n):F lattice system is given as follow:

Table 3: Comparison of the lower and upper bounds.

m n p LBy LB(@) LB(12) LB(16) Bract UBy UB(B) UB(12) UB(16)
10 10 090 0.16381 021231 — — 0.23185 0.30014  0.24724 — —
10 10 095 063727 0.65531 — — 0.67016  0.69148  0.68338 — —
10 10 099 098216 098173 — — 0.98262  0.98284  0.98355 — —
15 15 090 0.01468  0.02956  0.02956 — 0.03387 0.06400 0.03728  0.03728 —
15 15 095 034948 038115 0.38115 — 0.39462  0.42646 040631  0.40631 —
15 15 099 095887 095860  0.95860 — 0.95995 0.96050 096131  0.96131 —
30 30 09 001284 001849 0.01870  0.02009 — 0.03033  0.02569  0.02424  0.02287
30 30 098 0.49851  0.49394  0.50552 0.51140 — 0.52825 053431 052860  0.52295
30 30 099 0.84029 083945 0.83948  0.84192 — 0.84651  0.85157 0.84916  0.84676
50 50 098 017233 0.13920 014476  0.14762 — 0.16621  0.17427 016815 0.16517
50 50 099 0.61261 0.60313 0.60907 0.61206 — 0.62569  0.63897  0.63296  0.62998
5 010
3 008
T
04 0.06
g
g 004
(7]
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Figure 2: The difference between the exact system reliability and lower/upper bounds in the connected-(1,2)-or-(2,1)-out-of-(15,15):F lattice system

derived by Yamamoto (1996), labeled LB, and the upper



UB, = (1-29°+ qg)[]__ p* (292 _q3)](m*2)(n72)

b-preet-a)" (12
(1_ p2q2)2(1_ p3q2)m+n—4'

For each system, it took about less than one second to
calculate eachof LB, , LB(8), LB(12), UB,, UB(8) and
UB(12) with a Windows 10 Intel Core i5 3.20 GHz 4 GB, and
MATLAB R2016a. On the other hand, LB(16) and UB(16)
require approximately ten seconds as calculating time.

Table 3 shows that there are no best upper and lower
bounds for all system. The proposed bounds tend to be better
when the system size is small and component reliability p is
not nearly equal to one. This tendency is common between
proposed upper and lower bounds. Next, we investigate the
relationship between the component reliability and the
difference between the exact system reliability and
upper/lower bounds. Fig. 2 presents Upper/Lower Bound —
Exact Reliability as component reliability p for the connected-
(1,2)-or-(2,1)-out-of-(15,15):F lattice system. From Fig. 2, the
vicinity of p=0.95 , proposed bounds ( UB(12) and
LB(12)) are better. However, if the component reliability p is
very high (close to one), then the existing bounds (UB, and
LB, ) are better. Furthermore, Fig. 2 shows the vicinity of

p=0.15, UB, provides a bad value.

5. CONCLUSION

In this paper, we proposed new upper and lower bounds
for evaluating the reliability of a connected-(1,2)-or-(2,1)-out-
of-(m,n):F lattice system for the i.i.d. case. Then, we focus on
the size of subsystem calculated easily. First, we clarify the
system size which we can calculate within a set time by using
Markov-based methods proposed by Nakamura et al. (2016).
Next, we proposed new bounds based on the subsystem
calculated by the Markov-based methods and perform
numerical examples in order to compare with the existing
bounds proposed by Yamamoto (1996). The result of the
experiment shows that there are no best bounds for any system,
and in the case that the system size is small and component
reliability p is not nearly equal to one, the proposed bounds
tend to be better. However, as parameter k increases, the errors
between the exact system reliability and bounds are smaller,
though more calculating time is required. Hence, the proposed
methods give better bounds by making maximal use of

available calculating time. Most pervious bounds are
compared based on the error. Taking account into the error and
calculating time, we will derive improved bounds for a
connected-(1,2)-or-(2,1)-out-of-(m,n):F lattice system in the
future.
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