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Abstract. Screening experiments are often used to identify the important factors affecting intended systems’ 

response significantly. In the literature, factor screening approaches mostly adopted expectation as performance 

measures for stochastic simulation experiments. Nevertheless, even though a few alternatives were known to offer 

insightful perspectives for a more complete view of the statistical landscape, they were rarely discussed due to 

technical difficulties of developing methodologies. Quantile is an important alternative to the expectation for 

spatial data and applications of risk control, however, unlike the expectation, quantile lacks nice distributional 

properties so developing quantile-based applications would be a challenge. In this study, we propose a novel 

approach of factor screening for quantile-based performance measure. The proposed method is able to address 

large-scale problems based on statistical inference. Both Type I error and Power are considered to handle the risk 

with given conditions. A numerical study was conducted to evaluate the performance of the proposed methodology, 

and an empirical problem based on real data was solved to validate its practical viability. 
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1. INTRODUCTION 
 

Screening experiments are designed to eliminate the 

unimportant factors so that important factors can be 

investigated in further detail. Because of the sparsity of effect 

principle, we intend that only a few factors will influence the 

output among all factors. Experiments can be conducted by 

physical experiments or simulation experiments. However, for 

many real world problems, conducting physical experiments 

may be difficultly or costly. The drawbacks may due to too 
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much stochastic factors in the problems. As a result, simulation 

experiments are conducted when studying those problems.  

In order to analyze the problems which cannot be 

investigated by physical experiments, simulation experiments 

are conducted. Simulation software packages allow us to build 

a model which can take most factors and properties in the 

problem into consideration. This advantage of simulation 

experiments can let us study the problem more realistically, but 

may result in a too complex simulation model. For simulation 

experiments, in pursuance of statistically significance, 

replications are run to eliminate the variance due to the 

stochastic factors in the problem. However, if the simulation 

model is too complex to conduct experiments, experimental 

cost will be high and experimental time will be long. As a result, 

it is critical to find out the important factors that will influence 

the system significantly so that the limiting computing 

resource can be used in the more influential factors. 

In order to spend the computing resource efficiently, 

many screening methods have been developed with the 

purpose of identifying the important factors. The problem we 

study can then be analyzed by the important factors to avoid 

spending resource on the factors which may not affect the 

output significantly. Sequential Bifurcation (SB) (Bettonvil 

and Kleijnen, 1997) is one of the methods which has been 

widely used as the basis for other screening methods with 

simulation experiments. SB groups factors together and 

classifies the factors by its group effect. The process is efficient 

to screen out the important factors but the result is not 

theoretically guaranteed. In other words, the factors screened 

out by SB cannot be proved to be the true important factors. As 

a result, Wan et al. (2006) proposed a modified SB called 

Controlled Sequential Bifurcation (CSB). CSB integrates the 

hypothesis testing with SB to control the TypeⅠ error δ and 

power γ  of the screening result. By controlling these two 

probabilities, the screened out factors can be mathematically 

proved to be the true important factors. Though CSB 

guarantees the screening result to be true with a certain 

probability, however, the condition for CSB is that the 

direction of the factor effect should be known since it can only 

deal with the factors with same direction. Another method 

extended from CSB which deals with factor interaction is 

called CSB-X (Wan et al., 2006). CSB-X utilizes fold-over 

approach to cope with two-way interactions which can 

eliminate the effect caused by interaction and give us the 

unbiased result of the main effect factors. Sanchez et al. (2009) 

proposed Fractional Factorial CSB (FFCSB) to cope with the 

limitary of CSB that the direction of the effect should be known 

prior to experimentation. FFCSB uses an efficient fractional 

factorial design to identify the direction of factor effect and 

then conducts CSB for the factors with positive effect and 

negative effect respectively.  

CSB is proposed to guarantee the accuracy of the 

screening result for the true important factors. It is extended 

from SB which utilizes the concepts of group screening (Lewis 

and Dean, 2001) and sequential procedure. In group screening, 

if the group effect of a set of factors is considered to be 

insignificant, then all the factors in the group will be viewed as 

unimportant factors. In contrast, if the effect of a group is 

significant, then it is assumed that there is at least one factor in 

the group which is an important factor. In order to identify the 

important factors, the group with significant group effect will 

be divided into subgroups. The subgroups will be continued 

tested until there is only one factor in a group. By this testing 

structure, all factors are classified as important or unimportant. 

Additionally, in the sequential procedure, the insights of 

factors are accumulated as the experiments processing. The 

sequential nature makes the screening methods applicable for 

simulation experiments. CSB improves SB in providing 

assurance for the “correctness” of the screening results. It 

combines the concept of thresholds and hypothesis testing in 

the screening procedure to control the accuracy for selecting 

the true important factors.  

Most factor screening approaches adopt expectation as 

performance measure since expectation has nice distributional 

properties. However, expectation is not applicable to every 

problem. For example, expectation is not a proper performance 

for the common risk control problem. To control the risk, 

probability for specific event in the problem would be a useful 

performance rather than expectation. Further, compared to 

expectation, other alternatives provide a more complete view 

of the statistical landscape, such as quantile. Quantile is an 

important alternative to the expectation for spatial data. 

Though estimating quantile is a huge challenge, building a 

factor screening method with quantile-based performance 

measure is critical since screening methods with expectation 

performance are not appropriate for all the problems. For 

instance, the delivery problem in service-driven industry, such 

as manufacturing, is a problem which requires quantile as the 

performance in order to attain accurate delivery time. The 

quantiles of cycle time distribution can produce accurate 

estimates of cycle time and thus provide decision makers in the 

industry various levels of delivery time. Consequently, in order 

to conduct factor screening method in this kind of problem or 

other problems with quantile performance, quantile-based 

screening method is needed.  

The integration between quantile and screening method 

could be a challenge. There are many approaches discussing 

about quantile estimation. Eickhoff (2006) proposed a quantile 

estimator from mean value analysis and multiple independent 

replications to study the long-time behavior. Bekki et al. (2014) 

compared performances of two promising metamodeling tools, 

stochastic kriging and quantile regression, on steady-state 

quantile parameter estimation. Chen and Kelton (2001) 

implemented a sequential procedure to construct proportional 

half-width confidence intervals for a simulation estimator of 

the steady-state quantiles. Nakayama (2015) provided an 



 

asymptotically valid confidence interval for quantile by using 

a variance-reduction technique combined with stratified 

sampling and control variates. Jin et al. (2003) analyzed the 

probability that a simulation-based quantile estimator fails to 

lie in a prespecified neighborhood of the true quantile. Though 

there are many methods for quantile estimation, not all the 

methods are applicable. There are some limitations to adopt 

quantile methods in our research. Those methods with 

confidence interval as their results are not applicable since the 

estimated quantile will be calculated in our method. In addition 

to the result form, multiple simulation replications need to be 

conducted in the classifying process. In order to avoid 

spending too much computation resource, quantile needs to be 

estimated by smaller samples as possible. As a result, we adopt 

the method by Pandey (2000) in our methodology. He 

presented a distribution-free method for estimating the quantile 

function by using the principle of maximum entropy principle 

(MaxEnt). In the approach, probability-weighted moments 

(PWMs) are interpreted as the moment of quantile function. By 

integrating MaxEnt and PWMs, quantile can be estimated from 

small samples. 

In this paper, we propose a modified CSB method with 

quantile-based performance measure. During the CSB 

procedure, the performance in the classifying process will be 

the quantile effect of the factors. In order to specify the 

important factor with quantile-based performance, for each 

group of factors, the quantile should be estimated with factors 

set at high level and low level respectively. Then we can 

obtain the effect of these factors on quantile. Thus, as to 

obtain one quantile estimation, replications are conducted. 

This will cost much more computation efforts than CSB. In 

order to avoid spending too much computation resource, we 

use Pandey (2000) to estimate the quantile since it can 

estimate with small samples but does not loss the accuracy 

too much. This paper will apply quantile estimation method 

by Pandey (2000) to estimate the quantile of the output data 

and utilize the estimated quantile in CSB procedure to screen 

out the factors which are important to quantile performance. 

This paper is organized as follows: In Section 2, we 

define the model for experiment and the purpose of screening 

procedure. Section 3 describes the detail of the screening 

method. Conclusions are provided in Section 4. 

 

2. MODEL DESCRIPTION 
2.1 QUANTILE MAIN-EFFECTS MODEL 
 

The quantile model of the 𝑀  factors at α -quantile is 

denoted by 𝑄𝛼(Y(𝐱)).  

 

 𝑄𝛼(𝑌(𝒙)) = 𝛽0
𝛼 + 𝛽1

𝛼𝑥1 + ⋯ + 𝛽𝑀
𝛼 𝑥𝑀 ( 1 ) 

 

Where 𝑥𝑖 is the level setting of factor 𝑖 for 𝑖 = 1 … 𝑀, 

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑀) denotes the group level of 𝑀 factors, 

and 𝛽𝑖
𝛼 is the effect coefficients of factor 𝑖 on α −quantile 

for 𝑖 = 1 … 𝑀. Y(𝐱) is the response variable with group 

level 𝐱. 𝑄𝛼(Y(𝐱)) is the α −quantile of Y(𝐱). The 

meaning of 𝑄𝛼(Y(𝐱)) is that the output of Y(𝐱) will be less 

than 𝑄𝛼(Y(𝐱)) with probability α. In this paper, the factor 

coefficient 𝛽𝑖
𝛼 is the core we would like to study. Given a 

probability α, we are longing to recognize the factor effect 

on quantile in order to find the important factors in the 

screening procedure. It should be noticed that the model only 

consider main effects and the direction of the factor effect 

should be same. 

 

2.2 DETERMINATION OF FACTOR LEVELS 
 

There are total 𝑀 factors. The group level is defined as 

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑀) . The 𝐱  for an experiment at level 𝑙  is 

defined as 𝐱(𝑙). Thus, the 𝑥𝑖 of 𝐱 will be presented as 𝑥𝑖(𝑙) 

in 𝐱(𝑙). 𝑥𝑖(𝑙) is 𝑥𝑖 at level 𝑙. 
 

 𝒙(𝑙) = (𝑥1(𝑙), 𝑥2(𝑙), … , 𝑥𝑀(𝑙)) ( 2 ) 

 𝑥𝑖(𝑙) = {
1, 𝑖 = 1, ⋯ , 𝑙
0, 𝑖 = (𝑙 + 1), ⋯ , 𝑀

 ( 3 ) 

 

For every factor, the high level setting is 1 and low level setting 

is 0. If an experiment is set at 𝐱(𝑙), it means factors 1, ⋯ , 𝑙 in 

𝐱 are set at high level, which is 1, and other factors are set at 

low level, which is 0. 

In order to test the factors’ effect, experimentations will 

set the factors we have interests in, which we assume are 

factors 𝑘1, ⋯ , 𝑘2, at high level and low level respectively. We 

denote the experiments as high level experiment and low level 

experiment. For factors 𝑘1, ⋯ , 𝑘2, the difference between high 

level experiment and low level experiment is that they will be 

set at high level in high level experiment and set at low level 

in low level experiment. By setting factors 𝑘1, ⋯ , 𝑘2 at high 

level and low level respectively and, at the same time, let other 

factors which we are not interested remain the same level 

during the experiments, we can specify the factor effect for 

factors 𝑘1, ⋯ , 𝑘2. As a result, for factors 𝑘1, ⋯ , 𝑘2, the high 

level experiment is set at 𝐱(𝑘2) and the low level experiment 

is set at 𝐱(𝑘1 − 1). 

 
2.3 EXPERIMENTS AND QUANTILE EFFECT 
 

Since the true quantile is unknown, 𝑄𝛼(Y(𝐱)) can only 

be obtained by estimating the α −quantile of Y(𝐱). In order 

to get the data of Y(𝐱) , experiments are conducted several 

times. For one quantile value, 𝑟  replications will be run to 

estimate it. In one iteration, we will conduct 2𝑟 replications 

with 𝑟  replications for high level experiments and 𝑟 

replications for low level experiments. The high level 

α −quantile and low level α −quantile can be estimated based 



 

on the experiment results. Thus, one high level α − quantile 

and one low level α −quantile can be obtained in one iteration. 

The difference between the two quantiles is defined as the 

quantile effect. As a result, 2𝑟 replications are needed for one 

quantile effect. 

Denote Y(𝐱(𝑙)) as the output vector of Y(𝐱) with level 

at 𝐱(𝑙) . The 𝑖 th output of Y(𝐱(𝑙))  is Y𝑖(𝐱(𝑙))  for 𝑖 =
1, ⋯ , 𝑟. 

 

 𝑌(𝒙(𝑙)) = {𝑌1(𝒙(𝑙)), ⋯ , 𝑌𝑟(𝒙(𝑙))} ( 4 ) 

 

As a result, for factors 𝑘1, ⋯ , 𝑘2 , the low level experiment 

output is Y(𝐱(𝑘1 − 1)) and the high level experiment output 

is Y(𝐱(𝑘2)) . Denote the α − quantile of Y(𝐱(𝑙))  at 𝑖 th 

iteration is 𝑄𝑖
𝛼 (Y(𝐱(𝑙))) . Thus, the high level α − quantile 

and low level α −quantile at 𝑖th iteration is 𝑄𝑖
𝛼 (Y(𝐱(𝑘2))) 

and 𝑄𝑖
𝛼 (Y(𝐱(𝑘1 − 1))). 

By subtracting the high level α − quantile, 

𝑄𝑖
𝛼 (Y(𝐱(𝑘2))) ,  with the low level α − quantile, 

𝑄𝑖
𝛼 (Y(𝐱(𝑘1 − 1))), we can get the quantile effect. Define the 

quantile effect at 𝑖th iteration is 𝑄𝐸𝑖
𝛼(𝑘1, 𝑘2). 

 

 
𝑄𝐸𝑖

𝛼(𝑘1, 𝑘2) = 𝑄𝑖
𝛼 (𝑌(𝒙(𝑘2)))

− 𝑄𝑖
𝛼 (𝑌(𝒙(𝑘1 − 1))) 

( 5 ) 

 

With 𝑄𝐸𝑖
𝛼(𝑘1, 𝑘2), we can conduct the screening method in 

Section 3. 

 

2.4 OBJECTIVE OF SCREENING PROCEDURE 
 

In the screening procedure, the objective is to find out the 

important factors by classifying each factor into the important 

group or the unimportant group. We can classify the factors by 

comparing the factor effect with a user-specified threshold ∆0. 

Important factors will have effect 𝛽𝑖
𝛼 > ∆0 and unimportant 

factors will have effect 𝛽𝑖
𝛼 ≤ ∆0 . However, there must be 

error in classifying procedure when facing stochastic 

environment. In order to provide a correct result, the 

probability of incorrectly classifying must be controlled. We 

will utilize the idea in CSB of controlling the TypeⅠ error δ 

and power γ by hypothesis testing. There will be two user-

specified thresholds given in CSB, ∆0  and ∆1 . The first 

threshold ∆0 is defined as the degree of effect that one factor 

must achieve to avoid being labeled as an unimportant factor. 

The second threshold ∆1 is the effect that we don’t want to 

miss in the process. If factor effect 𝛽𝑖
𝛼 ≤ ∆0, the probability 

that the factor be classified as important factor should be less 

than α. Or if factor effect 𝛽𝑖
𝛼 ≥ ∆1, the probability that the 

factor be classified as important factor should be more than γ. 

Otherwise, when the factor effect falls between the two 

thresholds, the group will be divided into two subgroups for 

further testing since there may be important factors in the 

group but we are not sure. With these two error control, the 

screened out factors can be guaranteed to be the true important 

factors. However, compared with CSB, the meaning of 

importance is changed in this paper. 

The meaning of importance in quantile is different from 

that in expectation. As we want to specify the factor effect on 

quantile, experiments need to be conducted for the factors we 

have interest in. By setting these factors at high level and low 

level respectively, the difference between the outputs shows 

the effect of the factors on quantile. Thus, we can learn that if 

we consider the output with these factors set at high level, how 

much the quantile will increase compared to set at low level. 

Further, for those factors which we are not interested in during 

the experiments, they are set at the same level. By setting the 

indifferent factors at same level during the high level 

experiments and low level experiments, their quantile effects 

can be eliminated by subtracting the outputs of the high level 

experiments and low level experiments. 

 
3. QUANTILE-BASED CONTROLLED  

SEQUENTIAL BIFURCATION 
3.1 QUANTILE ESTIMATION 
 

In many quantile estimation methods, the form of 

estimated results can be a value or a confidence interval. In 

order to transform the performance measure of the factor 

screening methods into quantile-based, the estimation methods 

with confidence interval as their results are not suitable in the 

screening procedure. In the screening procedure, quantile 

results will be calculated to analyze the quantile effect of the 

factors. As a result, it is preferable to choose a quantile 

estimation method with value rather than confidence interval 

as its result. Besides the type of the estimated result is restrict, 

it is desirable to estimate a quantile with less observations. The 

reason for less observations is because, when conducting 

screening method, we need several samples to identify the 

effect for specific factors. That is, several quantile results 

would be needed in the screening procedure. With the purpose 

of not spending too much computation resource, the 

observations needed for one estimation of quantile can’t be too 

much. According to the above, we need a quantile estimation 

method which does not need to estimate a quantile with much 

observations and the type of its estimated result is value. 

We adopt the method from Pandey (2000) which use the 

maximum entropy principle (MaxEnt) to estimate a quantile 

from small samples. The concept of Pandey (2000) is that he 

builds the quantile function in terms of probability-weighted 

moments (PWMs) and then transform the quantile function by 

maximum entropy principle to estimate the quantile. In the first 

part, quantile function is expressed in terms of PWMs. In the 

second part, the quantile function is obtained by combining 

PWMs and MaxEnt.  



 

In the first part, the expected maximum 𝐸[Xn:n] and the

 expected minimum 𝐸[X1:n] of the n observations are exp

ressed as 

 

 𝐸[𝑋𝑛:𝑛] = 𝑛 ∫ 𝑥(𝑢)𝑢𝑛−1𝑑𝑢
1

0

 ( 6 ) 

 𝐸[𝑋1:𝑛] = 𝑛 ∫ 𝑥(𝑢)(1 − 𝑢)𝑛−1𝑑𝑢
1

0

 ( 7 ) 

 

Note that 𝑢 is the probability that the value of an experiment 

sample is less than 𝑥 and 𝑥(𝑢) denotes the quantile function 

of a random variable. 𝐸[Xn:n]  and 𝐸[X1:n]  can be 

transformed into the two forms of PWMs, 𝛼𝑘 and 𝛽𝑘. 

 

 𝛼𝑘 = ∫ 𝑥(𝑢)(1 − 𝑢)𝑘𝑑𝑢
1

0

,     𝑘 = 0,1, ⋯ , 𝑛 ( 8 ) 

 𝛽𝑘 = ∫ 𝑥(𝑢)𝑢𝑘𝑑𝑢
1

0

,     𝑘 = 0,1, ⋯ , 𝑛 ( 9 ) 

 

Thus, we can get 

 

 𝛼𝑘 =
1

𝑘
𝐸[𝑋1:𝑛] ( 10 ) 

 
𝛽𝑘 =

1

𝑘
𝐸[𝑋𝑛:𝑛] ( 11 ) 

 

Because PWMs are the expected maximum and expected 

minimum of observations with size 𝑘, the unbiased estimates 

of 𝛼𝑘 and 𝛽𝑘, 𝑎𝑘 and 𝑏𝑘, can be obtained. 

 

 
𝑎𝑘 =

1

𝑛
∑ (

𝑛 − 1
𝑘

) 𝑋𝑖

𝑛

𝑖=1

(
𝑛 − 1

𝑘
)⁄ ,      

𝑘 = 0,1, ⋯ , (𝑛 − 1) 

( 12 ) 

 
𝑏𝑘 =

1

𝑛
∑ (

𝑖 − 1
𝑘

) 𝑋𝑖

𝑛

𝑖=1

(
𝑛 − 1

𝑘
)⁄ ,      

𝑘 = 0,1, ⋯ , (𝑛 − 1) 

( 13 ) 

 

In the second part, the quantile function is transformed by 

combining PWMs and entropy. The entropy of the quantile 

function is as below 

 

 𝐻(𝑢) = − ∫ [𝑥(𝑢)𝑙𝑛𝑥(𝑢)]𝑑𝑢
1

0

 ( 14 ) 

 

The information is expressed in the form of PWMs 

 

 ∫ 𝑢𝑘𝑥(𝑢)𝑑𝑢
1

0

= 𝑏𝑘  ( 15 ) 

 

By ( 14 ) and ( 15 ), the quantile can be estimated as below 

 

 𝑥(𝑢) = 𝑒𝑥𝑝 [− ∑ 𝜆𝑘𝑢𝑘

𝑁

𝑘=0

] ( 16 ) 

 

The quantile can be obtained by calculating ( 16 ). 𝑢 is the 

probability we are interested in for the quantile. The 

Lagrangian multiplier 𝜆𝑘 can be solved by ( 15 ) and ( 16 ). 

 
3.2 QUANTILE-BASED CSB PROCEDURE 
 

An overview procedure of quantile-based CSB is shown 

in Figure 1. There are three phases in the procedure. In the first 

phase, experiments are operated. In the second phase, some 

values for the third phase are calculated. And in the third phase, 

factors are classified. The input for the model is all the 𝑀 

factors we would want to specify. The factors will be grouped 

together as an input. 

In the first phase, factors in the group are experimented at 

high level and low level. The experiments will run 𝑛 

iterations in total. In each iteration, high level experiments and 

low level experiments will be run 𝑟 times respectively. There 

are 2𝑟 replications in an iteration. After the experiments, one 

high level quantile and one low level quantile will be estimated 

by the 𝑟 observations with high level and the 𝑟 observations 

with low level. Thus, for 𝑛 iterations, 𝑛 quantile estimations 

for high level and 𝑛  quantile estimations for low level are 

obtained. Subtract one high level quantile with one low level 

quantile and get 𝑛 quantile effects at the end of the phase. The 

𝑛 quantile effects will be passed to the second phase. 

In the second phase, we will calculate the expected 

quantile effect, quantile effect variance and the thresholds in 

the screening process. The quantile effect of a testing group is 

the difference between one quantile estimation at high level 

and one at low level. Thus, by the results of the first phase, we 

can obtain 𝑛  quantile effects. In Section 0, the high level 

quantile estimation and low level quantile estimation are 

denoted as 𝑄𝑖
𝛼 (Y(𝐱(𝑘2))) and 𝑄𝑖

𝛼 (Y(𝐱(𝑘1 − 1))). Hence, 

the quantile effect is the difference between high level and low 

level and is denoted as 𝑄𝐸𝑖
𝛼(𝑘1, 𝑘2). 𝑄𝐸𝑖

𝛼(𝑘1, 𝑘2) is the α  

Figure 1: Quantile-based CSB Procedure 

 

quantile effect for factors 𝑘1, ⋯ , 𝑘2 at 𝑖th iteration. 

After getting the quantile effect, we can calculate the 

expected quantile effect 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) and the quantile effect 



 

variance 𝑆2(𝑘1, 𝑘2)  for the group with factors 𝑘1, ⋯ , 𝑘2 

based on these 𝑛  quantile effects. It should be noticed that 

𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) is the test statistics in the classifying process. 

 

 
𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) =

1

𝑛
∑ 𝑄𝐸𝑖

𝛼(𝑘1, 𝑘2)

𝑛

𝑖=1

 ( 17 ) 

 
𝑆2(𝑘1, 𝑘2) =

1

𝑛 − 1
∑(𝑄𝐸𝑖

𝛼(𝑘1, 𝑘2)

𝑛

𝑖=1

− 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2))
2
 

( 18 ) 

 
With 𝑆2(𝑘1, 𝑘2) , we can determine the thresholds for 

group with factors 𝑘1, ⋯ , 𝑘2  by CSB method. Given user 

specified ∆0  and ∆1 , there will be two stages in the third 

phase. In stage Ⅰ, there are two thresholds, 𝑈Ι(𝑘1, 𝑘2) and 

𝐿(𝑘1, 𝑘2) used to determine the critical region. 𝑈Ι(𝑘1, 𝑘2) is 

a critical change in the quantile output that we do not want to 
ignore and 𝐿(𝑘1, 𝑘2) is the minimum change in the quantile 

output. If the group effect is more than 𝑈Ι(𝑘1, 𝑘2), the group 

will be considered as an important group. In another case that 

the group effect is less than 𝐿(𝑘1, 𝑘2), all the factors in the 

group will be classified as unimportant factors. Otherwise, the 

classifying process will go to the second stage. In stage ΙΙ , 
there is only one threshold 𝑈ΙΙ(𝑘1, 𝑘2). If the group effect is 

more than 𝑈ΙΙ(𝑘1, 𝑘2) , the group will be classified as an 

important group. If not, all the factors in the group will be 

classified as unimportant factors. 

 

 𝑈Ι(𝑘1, 𝑘2) = ∆0 + 𝑡√1−𝛿,𝑛−1 𝑆(𝑘1, 𝑘2) √𝑛⁄  ( 19 ) 

 𝐿(𝑘1, 𝑘2) = ∆0 − 𝑡(1−𝛾) 2⁄ ,𝑛−1 𝑆(𝑘1, 𝑘2) √𝑛⁄  ( 20 ) 

 𝑈Ι(𝑘1, 𝑘2) = ∆0 + 𝑡√1−𝛿,𝑛−1 𝑆(𝑘1, 𝑘2) √𝑛′⁄  ( 21 ) 

 

𝑡𝜃,𝜈 is the 𝜃 quantile of the 𝑡 distribution with 𝜈 degree of 

freedom. 𝑛′  is the sample number of quantile effect in the 

second stage. 

In the third phase, the group of factors will be classified 

as important or unimportant. The test statistic is the expected 

quantile effect 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2). 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) will be compared 

with the thresholds. There are two stages in the classifying 

process. 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) will first be compared in stage Ι. If the 

group cannot be classified in stage Ι, then we go to stage ΙΙ. 
There are four kinds of results in stage Ι. 
1. 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) ≤ 𝐿(𝑘1, 𝑘2): Since the group effect is less 

than the minimum effect threshold, all the factors in the 

group, which are factors 𝑘1, ⋯ , 𝑘2 , are classified as 

unimportant factors. 

2. 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) ≤ 𝑈Ι(𝑘1, 𝑘2)  and 𝑛 ≥ 𝑁(𝑘1, 𝑘2) : 

𝑁(𝑘1, 𝑘2) is the maximum number of experiments we 

would spend on the group with factors 𝑘1, ⋯ , 𝑘2. Since 

we have done enough experiments on studying the group 

effect of factors 𝑘1, ⋯ , 𝑘2 , factors 𝑘1, ⋯ , 𝑘2  will be 

directly classified as unimportant factors because their 

quantile effect is less than 𝑈Ι(𝑘1, 𝑘2). 

3. 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) > 𝑈Ι(𝑘1, 𝑘2): The group effect is more than 

the critical effect threshold. Thus, the group is 

considered as an important group and it will be divided 

into two small group for further testing. 

4. 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) ≤ 𝑈Ι(𝑘1, 𝑘2) : The group effect does not 

exceed 𝑈Ι(𝑘1, 𝑘2) . However, since we haven’t done 

sufficient experiments to study the effect thoroughly, the 

process goes to stage ΙΙ. In stage ΙΙ, more experiments 

will be conducted. 

Note that 𝑁(𝑘1, 𝑘2) is the maximum number of experiments 

we spend on the group with factors 𝑘1, ⋯ , 𝑘2. If the number 

of experiments has reached 𝑁(𝑘1, 𝑘2), then we will take the 

effect as the true effect of the group. 𝑁(𝑘1, 𝑘2) is calculated 

as below. 

 𝑁(𝑘1, 𝑘2) = ⌈ℎ2 𝑆2(𝑘1, 𝑘2) (∆1 − ∆0)2⁄ ⌉ ( 22 ) 

 

ℎ is a constant satisfying P(𝑇𝑛−1 ≤ 𝑡√1−𝛿,𝑛−1 − ℎ) = 

(1 + 𝛾) 2⁄  , where 𝑇𝑛−1 is the 𝑡 -distributed random variable 

Yes 

Create a group with all the input factors 

 ሼ𝑋1, ⋯ , 𝑋𝑀ሽ in the group 

Test the group effect at high level and low level 

Obtain 𝑛 quantile effects and calculate 

the test statistics and thresholds 

Factors are experimented at high level and low level  

for 𝑟 replications respectively in one iteration  

Estimate high level quantile and low level quantile 

by the 𝑟 replication results of high level experiment 

and low level experiment respectively 

Subtract high level quantile with low level quantile  

as the quantile effect for the iteration 

Obtain 𝑛 quantile effects? 

Classify the group by quantile effect 

Unimportant Important 

All the factors in 

the group are 

unimportant 

factors 

More than one 

factor in the 

group 

Divide the group 

into subgroups 

Only one factor in 

the group 

The factor is 

classified as an 

important factor 

All the factors are classified as important or unimportant 

No 



 

with (𝑛 − 1) degree of freedom. 

As the process goes to stage ΙΙ, more experiments will be 

run to estimate the effect more accurately. The additional 

number of iterations is (𝑁(𝑘1, 𝑘2) − 𝑛). As a result, the group 

will run 𝑁(𝑘1, 𝑘2) iterations in total. The 𝑁(𝑘1, 𝑘2) effects 

will be utilized to calculate the updated 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2)  and 

𝑆2(𝑘1, 𝑘2) . 𝑈ΙΙ(𝑘1, 𝑘2)  will be calculated by the new 

𝑆2(𝑘1, 𝑘2). The comparing process can be continued after the 

additional experiments and value updating. We compare the 

updated 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) with 𝑈ΙΙ(𝑘1, 𝑘2). 

1. 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) ≤ 𝑈ΙΙ(𝑘1, 𝑘2) : The quantile effect is less 

than 𝑈ΙΙ(𝑘1, 𝑘2) . Since we have done 𝑁(𝑘1, 𝑘2) 

iterations for group but the effect is still less than the 

threshold, we conclude that all the factors in the group 

are unimportant factors. 

2. 𝑄𝐸̅̅ ̅̅ 𝛼(𝑘1, 𝑘2) > 𝑈ΙΙ(𝑘1, 𝑘2): The quantile effect is more 

than 𝑈ΙΙ(𝑘1, 𝑘2) . We declare that the group effect is 

important. There may be important factors in the group. 

As a result, the group will be divided into two subgroups 

to identify the important factors. 

With the two-stage classifying procedure, the group will 

be labeled as important or unimportant. For the unimportant 

group, all the factors in the group will be classified as 

unimportant factors. As for the important group, the factors in 

the group will be divided into two subgroups and both will go 

back to phase one for testing the group effect. The process will 

terminate until there is only one factor in the group. Thus, by 

this framework, all the factors can be classified as important or 

unimportant. 

 

4. CONCLUSION 

 

In this paper, we propose a framework for quantile-based 

factor screening method. This new method combines CSB 

method with quantile estimation method by Pandey (2000) to 

specify the important factors. There are three phases in the 

framework. First, experiments are conducted at high level and 

low level respectively to identify the factors’ effect. The 

quantile effect will be estimated by applying Pandey (2000) 

which estimate the quantile functions by using the maximum 

entropy principle. In the second phase, the thresholds and test 

statistics for the third phase will be calculated. In the third 

phase, the group of factors will be classified as important or 

unimportant. For the important group, factors in the group will 

be divided into two subgroups and the subgroups will return to 

the first phase for classifying the factors. The process will 

terminate until there is only one factor in the group. For the 

unimportant group, all factors in the group will be classified as 

unimportant factors. By these three phases, all factors can be 

classified as important or unimportant.  

This methodology framework is designed to specify the 

important factors for problems with quantile performance. It 

should be noticed that as this method is developed by CSB, it 

will be more useful for large scale problems. Moreover, it will 

cost much more computation resources than other screening 

strategies to obtain the quantile effect. Though the method 

costs much computation resources, it can still save resources 

in some cases. For quantile-based problems, such as 

optimization problems with quantile performance, adopting 

this quantile-based screening methods can help users to study 

the problems more efficiently by spending reputation resources 

on the important factors. When the solving process, such as 

optimizing, will cost a large number of resources, it is worth to 

adopt our methodology first. 
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