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Abstract. In today’s competitive world, it is imperative that a manufacturer possesses a good production and 

inventory planning model because customer demands are becoming more dynamic and difficult to forecast.  

To model the uncertainties of demands at each period, we use three different scenarios of demands mimicking 

a symmetric triangle distribution. In theory, a larger number of scenarios would bring about a closer look to 

the real world.  Unfortunately, it would also exacerbate the problem exponentially.  We propose a lot sizing 

model with stochastic and dynamic demands using a well-known robust optimization approach.  We 

implement the model using AMPL (A mathematical programming Language) program and test it for different 

parameters.  The result shows that the robust optimization approach provides small variances of cost 

functions even when we used only three scenarios at each period of demands.   
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1. INTRODUCTION 
 

In an ever changing environment, a good production 

and inventory planning requires some sort of knowledge 

about the customer demand even if it possesses 

uncertainties.  Although forecasting models are widely 

investigated, the results always subject to a certain level of 

uncertainties.   

When demands are projected to have a trend, 

inventory models assuming stationary demands are bound 

to fail (Wagner and Whitin, 1958).  In reality, demands are 

often not stationary. Aguirregabiria and Nevo (2010) states 

that dynamic demands can be the results of today’s demand 

which affect future demand. They can also be the results of 

customer’s expectation of the future.  For example, a 

customer expects that in the future price will increase then 

order will be placed today rather than in the future.  

Another factor which affects the customer order decision is 

product availability.  When a customer thinks that a 

product will be scarce in the future, it is more likely to 

place order in the present rather than waiting for the next 

periods.  Non stationary demands are also a logical 

consequence of product life cycles. Products in the 

introduction, growth and declining stages are normally 

trending upwards or downwards.   

It is therefore necessary to deal with non-stationary 

demands during a production planning.  We believe that 

these dynamic demands together with the fact that they are 

uncertain should be dealt with in the tactical level in order 

to give enough time for inventory managers to revise their 

plans when needed. When demands are deterministic, 

Wagner and Whitin (1958) proposed an algorithm to solve 

lot sizing problem aiming at lower total costs.  

Demands are however most often uncertain than 

deterministically known in advance.  Even when 

sophisticated forecasting models are used, errors are still 

present which brings about stock-outs and inventories.  If 

production level is higher than anticipated demand then 

inventory cost increases. In reverse, the stock out cost 

increases if production level is lower than demands.  Long 

range consequences of stock outs are rather difficult to 

measure such as the decreasing of customer’s satisfaction.  

Therefore, it is necessary to develop a lot sizing model 

which includes demands uncertainties early in the planning 
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stages.  The term robust optimization approach attempts to 

proactively include uncertainties in the planning models 

(Mulvey et al, 1995).  The solution obtained from such 

approach is robust, i.e. insensitive to changing environment, 

which stays close with the optimal solution.  Vanderbei 

and Zenios (1995) stated that robust approach is basically 

using goal programming formulas as a result of scenarios 

reprsented the uncertain parameters. This approach is also 

more general in term of applicability than stochastic linear 

programming because it does need knowledge on the 

distribution of the parameters.  

We propose a robust optimization model for lot sizing 

problems in order to obtain solutions that is robust or 

insensitive to uncertainties.  In doing so, the production 

planner can avert risks in the future.  

 

2. MATHEMATICAL FORMULATION 
 

2.1 Deterministic Formulation 
 

We studied a make-to-stock production system where 

inventories appear in the form of finished products. The 

manufacturing plant produces a variety of products to fulfill 

independent non stationary demands.  Relevant costs to be 

minimized in the problem are setup and holding costs, as 

well as stock out costs which is represented by backorder 

costs (e.g. Gonzales and Tullous, 2004).  A single type of 

product was considered by Gonzales and Tullous (2004) 

which will be generalized into multiple products 

manufactured in one single facility.  

Let consider the following parameters of the problem   

𝑑𝑖𝑡= Demands of product i in period t (units) 

𝐴𝑖𝑡= Setup costs in of manufacturing product i in period t  

𝐶𝑖𝑡= Variable costs of manufacturing product i in period t 

per unit 

ℎ𝑖𝑡= Holding costs per unit product i in period t 

𝑏𝑖𝑡= Back order costs per product i in period t 

T = Number of planning periods 

P = Number of product types 

where 𝑖 ∈ {1,2, … , 𝑃}  and 𝑡 ∈ {1,2, … , 𝑇 

 

Decision variables of the problem can also be described as 

follows: 

 

𝑌𝑖𝑡= 1 if production of product i takes place in period t  

0, otherwise. 

𝑄𝑖𝑡= The quantity of product i manufactured in period t 

𝐼𝑖𝑡= The inventory level of product i at the end of period t 

𝐵𝑖𝑡= The backorder level of product i at the end of period t 

 

The deterministic model can then be formulized as follows. 

Minimize 

 

∑ ∑ 𝐴𝑖𝑡𝑌𝑖𝑡
𝑇
𝑡=1

𝑃
𝑖=1 + ∑ ∑ 𝐶𝑖𝑡𝑄

𝑖𝑡
𝑇
𝑡=1

𝑃
𝑖=1 +  ∑ ∑ ℎ𝑖𝑡𝐼𝑖𝑡

𝑇
𝑡=1

𝑃
𝑖=1 +

 ∑ ∑ 𝑏𝑖𝑡𝐵𝑖𝑡
𝑇
𝑡=1

𝑃
𝑖=1            (1) 

Subject to: 

∑ 𝑄𝑖𝑡
𝑇
𝑡=1 = ∑ 𝑑𝑖𝑡

𝑇
𝑡=1 ;  ∀ 𝑖  (2) 

𝑄𝑖𝑡 + 𝐼𝑖𝑡−1 − 𝐼𝑖𝑡 + 𝐵𝑖𝑡+1 − 𝐵𝑖𝑡 = 𝑑𝑖𝑡    ∀ 𝑖, j   (3) 

𝑄𝑖𝑡 − M𝑌𝑖𝑡 ≤ 0; ∀ 𝑖, 𝑗  (4) 

𝑌𝑖𝑡  binary, 𝑄𝑖𝑡 , 𝐼𝑖𝑡 , 𝐵𝑖𝑡 ≥ 0    

 

Equation (1) shows the total costs to be minimized 

comprising of setup costs, variable manufacturing costs, 

holding costs and back order costs.  In Equation (2), total 

production during planning horizon equals to the total 

demand. This means that if inventory and backorder at the 

beginning of planning horizon equals to zero then they will 

be zero too at the end of the planning horizon. The 

generalizations of these inventory and backorder levels are 

rather straightforward.  The inventory and backorder 

balance equations are described in Equation (3) as 

explained in Figure 1 for each product.  

 

 

 

 

 

 

 

 

 

 

Figure 1: Inventory and backorder balance constraints 

 

Equation (4) shows the setup cost realization when 

production in period t takes place.  

 

 

2.2 Robust Formulation 
 

We consider a scenario based model to develop a 

robust plan taking into account that demand is uncertain. 

Let us assume that demand scenario for each product in a 

period is taking a triangle distribution with three 

realizations in the minimum value, mean value and 

maximum value with probability 0.16, 0.68, and 0.16 

respectively as given in Figure 2.  This discrete 

distribution is symmetric and widely used when the 

knowledge on distribution function is very limited.  In a 

two products problem, for example, the number of scenario 

will be 32 = 9 for each period.  
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Figure 2: Demand scenario 

 

We used the same concept as Mulvey et al., (1995) to 

describe the robust definition of a plan. Robust plan is 

defined as one that is close to optimal solution for any 

realization of scenarios. It is also near to feasible for any 

realizations.   Let us consider that S is the number of 

scenario for each period, where demand of product i is 

realized at the value 𝑑𝑖𝑠 with probability 𝑝𝑠.  We set that 

the decision variables that cannot be changed are the setup 

variables and the quantity of production even when demand 

is realized.  In contrarily, inventory and back order levels 

are floating as the demand is realized, which are denoted 

with 𝐼𝑖𝑡𝑠  and 𝐵𝑖𝑡𝑠 respectively.   

In a multi period planning horizon, unfortunately, the 

number of scenarios is exponentially expanded in the order 

𝑠𝑡 which makes it intractable to solve due to enormous 

number of variables.   

 

We propose an approximation method using the average of 

floating variables of inventory and back order levels as 

given in Figure 3 where demands are realized into 3 

different scenarios.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Floating variables 

 

The robust optimization problem can then be formulized as 

follows. 

 

Minimize 

̅
𝑡𝑜𝑡

+ 𝜆 ∑ ∑ ∑ 𝑝𝑠(
𝑖𝑡𝑠

− ̅
𝑖𝑡

)2𝑆
𝑠=1

𝑇
𝑡=1

𝑃
𝑖=1 +

𝜔 ∑ ∑ ∑ 𝑝𝑠𝐸𝑖𝑡𝑠
𝑆
𝑠=1

𝑇
𝑡=1

𝑃
𝑖=1   (5) 

Subject to 

̅
𝑡𝑜𝑡

= ∑ ∑ ̅
𝑖𝑡

𝑇
𝑡=1

𝑃
𝑖=1   (6) 


𝑖𝑡𝑠

= 𝐴𝑖𝑡𝑌𝑖𝑡 + 𝐶𝑖𝑡𝑄𝑖𝑡 + 𝐸𝑖𝑡𝑠 (7)  

̅
𝑖𝑡

= ∑ 𝑝𝑠𝑖𝑡𝑠
𝑆
𝑠=1  (8) 

𝐸𝑖𝑡𝑠 = ℎ𝑖𝑡𝐼𝑖𝑡𝑠 + 𝑏𝑖𝑡𝐵𝑖𝑡𝑠  (9)  

𝑄𝑖𝑡 + 𝐼𝑖̅𝑡−1 − 𝐵̅𝑖𝑡−1 = 𝑑𝑖𝑡𝑠 + 𝐼𝑖𝑡𝑠 − 𝐵𝑖𝑡𝑠       (10) 

𝐼𝑖̅𝑡 = ∑ 𝑝𝑠𝐼𝑖𝑡𝑠
𝑆
𝑠=1  (11)     

𝐵̅𝑖𝑡𝑠 = ∑ 𝑝𝑠𝐵𝑖𝑡𝑠
𝑆
𝑠=1    (12) 

𝐼𝑖𝑡𝑠 ≤ 𝑀𝑍𝑖𝑡𝑠 (13) 

𝐵𝑖𝑡𝑠 ≤ 𝑀𝑈𝑖𝑡𝑠 (14) 

𝑍𝑖𝑡𝑠 + 𝑈𝑖𝑡𝑠 = 1 (15) 

𝑄𝑖𝑡 ≤ MYit  (16)    

𝑌𝑖𝑡  , 𝑍𝑖𝑡𝑠, 𝑈𝑖𝑡𝑠  binary,    

𝑄𝑖𝑡 , 𝐼𝑖𝑡𝑠, 𝐵𝑖𝑡𝑠,   𝐼𝑖̅𝑡 , 𝐵̅𝑖𝑡 , ̅𝑡𝑜𝑡
, 

𝑖𝑡𝑠
, ̅

𝑖𝑡
, 𝐸𝑖𝑡𝑠  ≥ 0 . 

 

Equation (5) shows the total costs to be minimized 

comprising of the average costs, the variance of the costs 

which is weighted with parameter 𝜆 and the sum of floating 

costs which is weighted with parameter 𝜔. The total costs for 

all periods is given by Equation (6), while Equation (7) shows 

the scenario costs consisting of the setup and variable 

production costs (unchanged) and the floating costs. The 

average of costs in period t is given in Equation (8), while 

Equation (9) shows the floating costs. Equation (10) is a 

balance constraint as explained in Figure 3. Equation (11) and 

Equation (12) shows the average of inventory levels and back 

order levels respectively.  Equation (13), (14) and (15) 

makes sure that inventory levels and back order levels are 

complementary to avoid both variables become positives. 

Equation (16) is the usual setup realization when production 

takes place in period t.  This robust optimization model is 

non-linear because the objective function consists of a 

quadratic function.  However, all constraints are linear.       

 

 

3. IMPLEMENTATION 
 

We implement the model into an AMPL (A 

Mathematical Programming Language) model and then run it 

in NEOS Server available in the following http://www.neos-

server.org/neos/solvers/minco:FilMINT/AMPL.html  

 

We tested the model using 12 illustrative examples in 

Table 1, where demands for two products are following 

normal distributions with average 𝜇 and variance 𝜎2.  As 

approximation, the minimum value, mean value, and 

maximum values take place at (𝜇 − 𝜎) , 𝜇 , and (𝜇 + 𝜎) 

respectively for each product for each period.  For example, 

in period t scenario 1 is resulted from the realization of 

Periode t

dit1
dit2 dti3

Qit

Bit3

Bit2

Bit1
Periode t+1

Iit1

Iij2

Iit3

I(ave)it

B(ave)it

http://www.neos-server.org/neos/solvers/minco:FilMINT/AMPL.html
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minimum value for product 1 and also the minimum value for 

product 2.  The probability of such scenario is 0.16(0.16) = 

0.0256.  

 

The results of the experiments are given in Figure 4, Figure 5 

and Figure 6.  In Figure 4, the average costs increase when 

the parameter 𝜔 increases to the point that they reach steady 

states.  In other hand, the cost variance decreases when 

parameter 𝜔 increases as shown in Figure 5. The effect of 

parameter 𝜆 is rather the opposite of parameter 𝜔.  The 

robust optimization model is basically using the goal 

programming concept, where multiple objective functions are 

weighted by some parameters.  

 

We also tested the solution where demands are realized 

following a normal distribution. The resulted solution shows 

that total costs as the performance measure are distributed 

following a truncated normal distribution.  The variance of 

this distribution is rather small which is expected since the 

objective function has taken this into account at the beginning 

of the model.  Figure 6 shows the objective function 

distribution.  

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Average costs in function of Omega and Lambda 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5: Cost Variances in function of Omega and Lambda 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Total cost distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Illustrative examples 

 

t 
Product 1 Product 2 

d (𝜇𝑖𝑗 , 𝜎𝑖𝑗
2 ) A C h b d (𝜇𝑖𝑗 , 𝜎𝑖𝑗

2 ) A C h b 

1      (60,400) 20 4 0,5 10    (80,900) 18 3 0,2 9 

2      (65,400) 20 4 0,5 10    (85,900) 18 3 0,3 10 

3      (70,400) 21 5 0,6 11    (90,900) 19 4 0,4 11 
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t 
Product 1 Product 2 

d (𝜇𝑖𝑗 , 𝜎𝑖𝑗
2 ) A C h b d (𝜇𝑖𝑗 , 𝜎𝑖𝑗

2 ) A C h b 

4      (75,400) 22 5 0,7 12    (95,900) 19 4 0,5 12 

5      (80,400) 22 6 0,8 13  (100,900) 20 5 0,6 12 

6      (85,400) 23 6 0,8 14  (100,900) 21 5 0,6 14 

7      (90,400) 23 7 0,9 15  (105,900) 22 6 0,7 14 

8      (95,400) 24 7 1 15  (105,900) 22 7 0,8 15 

9    (100,400) 25 8 1 16  (110,900) 23 7 0,9 15 

10    (105,400) 25 8 2 16  (120,900) 23 8 0,9 16 

11    (110,400) 26 9 2 17  (125,900) 24 8 1 16 

12    (115,400) 26 10 3 18  (130,900) 24 9 2 17 

 
 

 

4. CONCLUSION AND FURTHER RESEARCH 
    

We conclude that lot sizing problem with dynamic 

demands can be modeled using the robust optimization 

model.  The performance of robust model is seen in the 

form of the variance of performance measures, i.e. total 

costs.  The result confirmed previous studies that when 

addressed earlier in the model, uncertainties effect to the 

plan is less visible.  In other words, the plan is robust or 

less risk against demand uncertainties.  Furthermore, the 

robust optimization approach can be very beneficial in real 

life practices.  

Further research is directed toward the use of other 

demand distribution, especially non-symmetric 

distributions such as exponential distribution. We also need 

to investigate deeper on the performance of pre-emptive 

goal programming instead of weighted goal programming.  

For example, we can say that the variance of the total costs 

has greater importance more than the average.    

In the modeling process, we assumed that setup and 

production quantities are variables that cannot be changed 

once they are decided. In the future, it is necessary to look 

into the problem where only setup decisions are unchanged, 

while production quantities can be changed into some 

degree depending on the realization of demands.  
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