
 

 

An Ant Colony Optimization for the Capacitated Arc Routing 

Problem 
 

Han-Shiuan Tsai 
Department of Industrial Engineering & Management 

Yuan Ze University, Taoyaun, Taiwan 

Tel: (+886) 3-463-8800 ext. 2516, Email: mjes09@gmail.com 

 

Ching-Jung Ting† 

Department of Industrial Engineering & Management 

Yuan Ze University, Taoyaun, Taiwan 

Tel: (+886) 3-463-8800 ext. 2526, Email: ietingcj@saturn.yzu.edu.tw  

 

 

Abstract. The capacitated arc routing problem (CARP) is a difficult combinatorial optimization problem 

which has wide applicability in real world logistics problems. The CARP is to find a set of routes with 

minimum costs for a set of demand arcs with vehicle capacity limitations. Due to its NP-hard property, CARP 

cannot be solved within reasonable time by an exact algorithm. In recent years, metaheuristics algorithms 

have been developed to solve the CAPR. In this research, we propose an ant colony optimization (ACO) 

algorithm to solve the problem. The proposed ACO was tested with three sets of benchmark instances from 

the literature for its effectiveness and compared with the existing best performing metaheuristics. The 

computational results show that the ACO is competitive with the compared heuristic algorithms.  
 

Keywords: capacitated arc routing problem, ant colony optimization, logistics  

 

 

1. INTRODUCTION 
 

The capacitated arc routing problem (CARP) has been 

the subject by many researchers during last decades due to 

its wide range of real world applications. The CARP can be 

informally described as follows. We are given a graph with 

a set of nodes and edges, where contains required edges 

with nonnegative demand. A traversal cost is associated 

with each edge. The objective is to determine a set of 

vehicle routes of minimum total cost, such that each route 

starts and ends at the depot, each required edge is served by 

one single vehicle, and the total demand serviced on a route 

of a vehicle must not exceed the vehicle capacity.  

Many applications occur for the CARP, such as 

household waste collection, snow plowing, winter gritting, 

postal deliveries, and street sweeping, among others (Dror, 

2000). CARP is a NP-hard problem, classical exact 

methods are only applicable for relative small size 

instances. Heuristic and metaheuristics are more efficient 

for solving medium to large size CARP. In this work, we 

investigate a population-based algorithm for the CARP. Ant 

colony optimization (ACO) algorithms have been proved to 

be very effective for solving a large number of difficult 

combinatorial optimization problems (Chandra Mohan and 

Baskaran, 2012; Ting and Chen, 2013), including CARP 

(Lacomme et al., 2004a; Santos et al., 2010). Based on our 

previous experiences on ACO applied to various 

combinatorial problems, we provided an effective ACO to 

compare with the current state-of-the-art CARP methods. 

The remainder of this paper is organized as follows. In 

section 2, we provided related work of capacitated routing 

problem. We proposes ant colony optimization algorithm 

(ACO) for the CARP in section 3. Section 4 tests the 

effectiveness of the proposed ACO by three sets of 

benchmark instances and compares the results with other 

leading algorithms. Section 5 concludes this research and 

suggests future research. 

 

2. RELATED WORK 
 

The CARP was first defined in 1981 by Golden and 

Wong, who proved its NP-hardness. To the best of our 

knowledge, Dror (2000), Wøhlk (2008), Corberán and 

Prins (2010), and Corberán and Laporte (2014) provided 

good surveys on the CARP. Dror (2000) collected the arc 

routing problem related articles in theory and applications 

mailto:ietingcj@saturn.yzu.edu.tw


 

 

 

before 2000. Wøhlk (2008) provided an overview of 

developments in the CARP between 2000 and 2007. More 

than 30 articles for the period 2000 to 2010 dealing with 

CARP variants were discussed by Corberán and Prins 

(2010). Corberán and Laporte (2014) provided up-to-date 

collections of researches in theory and applications. We 

refer interested reader to these excellent survey papers and 

books. 

Due to the CARP complexity, many real world large-

scale instances are intractable for exact algorithms, 

heuristics and metaheuristics were developed to provide 

high-quality solutions on real world applications. Examples 

of heuristics for the CARP include path-scanning (Golden 

et al., 1983), augment-insert (Pearn, 1991), augment-merge 

(Golden and Wong, 1981), and Ulusoy’s tour splitting 

method (Ulusoy, 1985). 

Among the metaheuristic methods, local-search based 

approaches are popular on earlier publications. Eglese 

(1994) and Wøhlk (2005) proposed simulated annealing for 

the CARP. Hertz et al. (2000), Brandão and Eglese (2008), 

and Mei et al. (2009) developed tabu search (TS) 

algorithms for the CARP. Hertz and Mittaz (2001) and 

Polacek et al. (2008) proposed variable neighborhood 

search (VNS) to solve the CARP. Beullens et al. (2003) 

designed an effective guided local search (GLS) while 

Usberti et al. (2003) developed GRASP with evolutionary 

path-relinking for the CARP.  

Recently, population-based approaches are proposed 

and generally achieve better performances. Lacomme et al. 

(2004a), Mei et al. (2009), Tang et al. (2009) proposed 

memetic algorithms (MA) for the CARP, while Lacomme 

et al. (2006) developed a genetic algorithm (GA) for the 

CARP. Both MA and GA improve their solutions based on 

crossover and mutation operators. Lacomme et al. (2004b) 

and Santos et al. (2010) designed ant colony optimization 

algorithm (ACO) for the CARP. Among these methods, the 

ant colony optimization algorithm provided better results 

on the classical test instance sets.  

 

3. ANT COLONY OPTIMIZATION  
 

The ant colony optimization (ACO), which is learned 

from the behavioral of real ant colonies, was first proposed 

by Dorigo et al. (1996). Subsequently, many variants of 

ACO have been developed and applied extensively in the 

combinatorial optimization problems. Dorigo and Stützle 

(2004) provided descriptions of available ACO algorithms 

and related literature review. In principle, ACO can be 

applied to any discrete optimization problem for which 

some solution construction mechanism can be conceived.  

The procedures of our ACO are described as follows 

and introduced in the following sections. 

1. Initialization 

 Initialize parameters and value of pheromone matrices. 

2. CARP process 

 2.1 Select a vehicle to a route. 

 2.2 Select the next arc based on state transition rule. 

 2.3 If all required arcs are assigned, go to step 3. 

 2.4 If the vehicle capacity is exceeded, go to step 2.1; 

otherwise go to step 2.2. 

3. Local pheromone updating 

 3.1 Update the pheromone levels. 

 3.2 If all ants have solutions, go to step 4; otherwise go 

to step 2. 

4. Local search 

 Using swap、2-opt and insertion on the best solution 

of current iteration. If the iteration best solution is 

better than the global best solution, update the global 

best solution. 

5. Global pheromone updating 

 Update the pheromone by iteration best solution and 

best solution till now.  

6. Terminating condition 

 If the terminating criterion (maximum number of 

iterations in this paper) is met, stop; otherwise repeat 

steps 2~5. 

 

3.1 Solution Representation  
 

The solution representation for the CARP use the 

natural encoding approach as used in most of vehicle 

routing problems. A list of required arcs is connected by 

implicit shortest paths. In such a way, the encoding and 

decoding of a solution is easy to compute the total travel 

cost of all routes. Figure 1 presents a solution of three 

vehicle routes for the 10 required arcs. The first vehicle will 

service required arcs 1, 2, 3, and 4, required arcs 5, 6, and7 

are serviced by second vehicle, and the required arcs 8 to9 

are serviced by third vehicle.  

 

1 2 0 985 10043 6 7

Figure 1: A representation of 10 nodes solution 

 

3.2 Solution Construction  
 

In our ACO, when a vehicle visits a required arc 
i, ant h movers to a required arc k by the following 
state transition rule. 

    










 

0

0

  ,

  ,

qqS

qqmaxarg 
s

ijij
Nj i




 (1) 



 

 

 

   
   















 


otherwise

Njif
tPS

i

Nq
iqiq

ijij

k
ij

i

 ,0

  ,
)(   :









 (2) 

where Ni is the set of arcs which are not visited by ant k at 

arc i, ij is the pheromone of the shortest path between arcs 

i and j, ηij is defined as the reciprocal of the shortest path 

between arcs i and j.  is the parameter that determines the 

relative effect of ij versus ij ( > 0), q is a random variable 

uniformly distributed in [0, 1], and q0 is a pre-defined 

parameter (0  q0  1). If q  q0, then the best arc j for arc i 

is determined according to eq. (2). On the contrary, it is 

chosen according to S which is a random variable selected 

according to the probability distribution given in eq. (3). 

Hence, the parameter q0 determines the relative importance 

of exploitation eq. (2) versus exploration eq. (3). 

 

3.3 Pheromone Update 
 

The pheromone updating of a typical ACO includes 

global and local updating rules. The ants apply a local 

pheromone update rule immediately after they crossed a 

shortest path (i, j) during the tour construction. The local 

pheromone updating rule of our ACO is 

0)1(   old
ij

new
ij , if {edge(i, j) Tk} (3) 

where Tk denotes the routes constructed by ant k,  is the 

pheromone decay parameter in the range of [0, 1] that 

regulates the reduction of pheromone on the edges. The 0 

is the initial value of the pheromone matrix for the route 

construction rule, and is set to be 0.2 in this paper. 

In our ACO, the best elitist tours, including the global-

best tour (Tb) and the iteration-best tour (Ts) of CARP, are 

allowed to lay pheromone on the edges that belong to them. 

The idea here is to balance between exploitation (through 

emphasizing the global-best tour) as well as exploration 

(through the emphasis to the iteration-best tour). The global 

updating rule of ACO for CARP is described as follow. 

ij
old
ij

new
ij   )1(  (4) 

where  















otherwise0

),( if/1

),( if/1

ss

bb

ij TjiL

TjiL

  (5) 

Lb and Ls denote the objective function value of the global-

best solution and the iteration-best solution of CARP, 

respectively; Tb and Ts are the global best solution and 

iteration-best solution, respectively.  

3.4 Local Search 
 

Local search heuristic is a time-consuming procedure 

but often used to improve the solutions of ACO. To save 

the computation time, we only apply local search on the 

iteration-best solution in this paper. In addition, three local 

search methods are involved in our ACO, including 2-opt, 

swap and insertion. The local search could be applied 

within route or between routes. This is because that diverse 

neighborhood moves can expand the solution searching 

space. The methods are kept and sorted according to their 

overall performance on the tested instances. 2-opt move is 

to delete two linkage of a route or two routes. The broken 

routes are reconnected by a new linkage. Two customers 

are exchanged in swap. Insertion is to move one customer 

from its current position to another position, in the same 

route or in a different route.  

 
4. COMPUTATIONAL EXPERIMENTS  

 

The ACO is in Microsoft Visual Studio 2010 C++ and 

implemented on a computer with Intel Core (TM) i5-2400 

3.10 GHz processor and 8 GB RAM under Windows 7 

operation system. The results are compared with the best 

methods for the CARP in the literature. These tests are 

done on three sets of benchmark instances.  

The first set gdb contains 23 instances from DeArmon 

(1981) with 7 to 27 nodes and 11 to 55 edges. The second 

set val contains 34 instances from Benavent et al. (1992) 

with 25 to 50 nodes and 34 to 97 required edges. The third 

set egl contains 24 instances from Eglese (1994) with 77-

140 nodes and 98-190 edges that include 51-190 required 

edges. All the instances were conducted for 10 independent 

runs.  

In preliminary experiments we tried to find a good 

parameter setting for the proposed ACO algorithm. We 

consider a set of parameters for the algorithm and then 

modifying one at a time, while keeping the others fixed. 

The parameters that were tested include:   {0.5, 0.8, 1}, 

  {0.1, 0.3, 0.5}, q0  {0.1, 0.5, 0.9}, b = {10, 15, 20}, 

and Iter = {50, 100, 150}. We found that for the parameter 

setting,  = 0.8,  = 0.1, q0 = 0.9, b = 10, Iter = 150 can 

provide the best average solution. These parameters will be 

used for all instances for further experiment. 

The following is a brief description of the column 

headings in tables 1, 3, and 5. The column Inst. indicates 

the instance name. The columns headed |V| and |A| indicate 

the number of vertices, required serviced arcs numbers. The 

column headed BKS gives the best know solution from the 

literature, while the column CPU shows the computational 

time in second. The columns min, max, avg, represents the 

best, worst and average are the minimum, maximum and 

average cost of the solutions obtained among the 10 runs, 



 

 

 

respectively. The column headed Gap presents the gap of 

minimum cost from the best known solution.  

For evaluate the effectiveness our proposed ACO, we 

assess ACO in these three benchmark instance sets with 

current state-of-the-art algorithms: BACO (Lacomme et al., 

2004b), MA (Lacomme et al., 2004a), TSA (Brandão and 

Eglese, 2008), VNS (Polacek et al., 2008), GA (Lacomme 

et al., 2006), ANT_12 (Santos et al., 2010). For each data 

set, we first present our ACO results and then the summary 

of the comparison. 

 Table 1 presents the results for the small size gdb 

data set (23 instances). Instances 8 and 9 were removed 

because they contained inconsistencies. Our ACO is able to 

obtain the optimal solutions for all 23 instances. The 

average computational time is only 1 second. Table 2 

summarizes the performance of our ACO and other leading 

heuristic algorithms. Both GLS and our ACO can obtain 

optimal solutions in 23 instances. All the comparing 

algorithms were tested on different computers with a CPU 

ranging from 500 megahertz to 3.1 gigahertz. To compare 

the efficiency of the algorithms, we used Dongarra’s (2014) 

tables to get a very rough idea of the relative speeds of 

different computers. If Ta is the computational time and Pa 

is the computer power (Mflop/s) for one algorithm a, the 

scaled time of the algorithm is (Ta/Tg)*(Pa/Pg), with g 

standing for the ACO. GLS is the fastest algorithm among 

all compared heuristics for this small size data set. Our 

ACO outperforms the other two ant colony optimization 

algorithms in terms of solution accuracy. 

Table 3 presents the computational results for the 

medium size val data set (34 instances). Our ACO can find 

all 34 optimal solutions within 4.1 seconds on average. 

Table 4 further summarizes the results among all 

comparing algorithms. Our ACO is the only algorithm that 

can obtain all 34 optimal solutions. The MA is the fastest 

algorithm among all compared heuristics. However, MA 

can only reach 29 optimal solutions. Our ACO is the best 

among three ant colony optimization algorithms in terms of 

solution quality. 

Table 5 shows the computational results for the large 

size egl instances (24 instances). Our ACO can only reach 

16 best known solutions out of 24 instances. The 

computational time is 33.2 seconds on average. The 

average gap is much higher than previous smaller instances 

 

 

Table 1: Results for gdb data set. 

 

Inst. |V| |A| BKS CPU min max avg Gap 

gdb1 12 22 316 0.5 316 316 316 0 

gdb2 12 26 339 0.6 339 339 339 0 

gdb3 12 22 275 0.4 275 275 275 0 

gdb4 11 19 287 0.4 287 287 287 0 

gdb5 13 26 377 0.6 377 377 377 0 

gdb6 12 22 298 0.5 298 298 298 0 

gdb7 12 22 325 0.5 325 325 325 0 

gdb10 27 46 348 1.7 348 348 348 0 

gdb11 27 51 303 2.2 303 333 326.5 0 

gdb12 12 25 275 0.7 275 275 275 0 

gdb13 22 45 395 1.2 395 395 395 0 

gdb14 13 23 458 0.7 458 458 458 0 

gdb15 10 28 536 0.6 536 536 536 0 

gdb16 7 21 100 0.9 100 100 100 0 

gdb17 7 21 58 0.7 58 58 58 0 

gdb18 8 28 127 0.9 127 127 127 0 

gdb19 8 28 91 0.8 91 91 91 0 

gdb20 9 36 164 1.0 164 164 164 0 

gdb21 8 11 55 0.3 55 55 55 0 

gdb22 11 22 121 0.7 121 121 121 0 

gdb23 11 33 156 1.1 156 156 156 0 

gdb24 11 44 200 2.0 200 200 200 0 

gdb25 11 55 233 3.0 233 233 233 0 

Avg.    1.0 253.8 255.1 254.8 0 

 



 

 

 

Table 2: Comparison of computational results for various algorithms of gdb data set. 

 

Method Reference  Num Gap CPU Computer  Mflop/s ST 

BACO Lacomme et al. (2004b) 19/23 0.30 19.8 Pentium III 800 MHz 138 1.40 

MA Lacomme et al. (2004a) 22/23 0.04 3.2 Pentium III 1.0 GHz 192 0.32 

TSA Brandão and Eglese (2008) 21/23 0.08 2.5 Pentium Mobile 1.4Ghz 352 0.36 

GA Lacomme et al. (2006) 19/23 0.21 13.8 Pentium IV 1.8 GHz 292 2.08 

GLS Beullens et al. (2003) 23/23 0.00 1.7 Pentium II 500 MHz 98 0.09 

ANT_12 Santos et al. (2010) 22/23 0.04 3.4 Pentium III 1.0 GHz 192 0.34 

ACO Our  23/23 0.00 1.0 Intel Core i5-2400 3.10 GHz 2426 1.00 

 

Table 3: Results for val data set. 

 

Inst. |V| |A| BKS CPU min max avg Gap 

val1a 24 39 173 2.4 173 173 173.0 0 

val1b 24 39 173 2.4 173 173 173.0 0 

val1c 24 39 245 2.8 245 245 245.0 0 

val2a 24 34 227 2.2 227 229 227.3 0 

val2b 24 34 259 2.1 259 259 259.0 0 

val2c 24 34 457 2.5 457 457 457.0 0 

val3a 24 35 81 2.3 81 81 81.0 0 

val3b 24 35 87 2.2 87 87 87.0 0 

val3c 24 35 138 2.4 138 138 138.0 0 

val4a 41 69 400 3.4 400 400 400.0 0 

val4b 41 69 412 3.5 412 412 412.0 0 

val4c 41 69 428 3.7 428 463 450.9 0 

val4d 41 69 530 3.8 530 585 559.1 0 

val5a 34 65 423 3.8 423 431 426.4 0 

val5b 34 65 446 3.6 446 450 447.3 0 

val5c 34 65 474 3.7 474 482 478.6 0 

val5d 34 65 575 3.9 575 630 598.9 0 

val6a 31 50 223 2.9 223 231 225.3 0 

val6b 31 50 233 2.8 233 233 233.0 0 

val6c 31 50 317 3.5 317 317 317.0 0 

val7a 40 66 279 3.6 279 282 282.4 0 

val7b 40 66 283 3.8 283 287 283.3 0 

val7c 40 66 334 4.1 334 362 347.0 0 

val8a 30 63 386 3.5 386 386 386.0 0 

val8b 30 63 395 3.5 395 413 401.4 0 

val8c 30 63 521 3.7 521 521 521.0 0 

val9a 50 92 323 7.3 323 341 330.1 0 

val9b 50 92 326 7.6 326 347 334.1 0 

val9c 50 92 332 7.4 332 346 344.5 0 

val9d 50 92 389 7.3 389 425 415.1 0 

val10a 50 97 428 7.0 428 436 436.2 0 

val10b 50 97 436 7.2 436 448 436.8 0 

val10c 50 97 446 6.9 446 462 455.8 0 

val10d 50 97 525 7.5 525 570 551.1 0 

Avg.    4.1 344.4 355.9 350.4 0 

 

 



 

 

 

Table 4: Comparison of computational results for various algorithms of val data set. 

 

Method Reference  Num Gap CPU Computer  Mflop/s ST 

BACO Lacomme et al. (2004b) 26/34 0.90 276.3 Pentium III 800 Hz 138 4.02 

MA Lacomme et al. (2004a) 29/34 0.23 25.6 Pentium III 1.0 GHz 192 0.49 

TSA Brandão and Eglese (2008) 31/34 0.15 20.2 Pentium Mobile 1.4Ghz 352 0.71 

VNS Polacek et al. (2008) 32/34 0.09 43.9 Pentium IV 3.0GHz 1573 7.30 

GA Lacomme et al. (2006) 23/34 0.50 76.2 Pentium IV 1.8 GHz 292 2.35 

GLS Beullens et al. (2003) 30/34 0.47 81.3 Pentium II 500 Hz 98 0.84 

ANT_12 Santos et al. (2010) 26/34 0.03 25.3 Pentium III 1.0 GHz 192 0.51 

ACO Our  34/34 0.00 4.1 Intel Core i5-2400 3.10GHz 2426 1.00 

 

Table 5: Results for egl data set. 

 

Inst. |V| |A| BKS CPU min max avg Gap 

egl-e1-A 77 98 3548 15.8 3548 3595 3563.4 0 

egl-e1-B 77 98 4498 15.9 4498 4539 4508.6 0 

egl-e1-C 77 98 5595 15.2 5595 5668 5615.3 0 

egl-e2-A 77 98 5018 16.7 5018 5032 5023.8 0 

egl-e2-B 77 98 6317 17.1 6317 6425 6389.3 0 

egl-e2-C 77 98 8335 16.3 8335 8398 8358.2 0 

egl-e3-A 77 98 5898 17.0 5898 5986 5943.7 0 

egl-e3-B 77 98 7775 17.5 7775 7815 7796.6 0 

egl-e3-C 77 98 10292 17.2 10292 10446 10340.4 0 

egl-e4-A 77 98 6444 17.2 6444 6464 6461.0 0 

egl-e4-B 77 98 8983 18.1 8983 9079 9009.2 0 

egl-e4-C 77 98 11596 18.2 11596 11670 11645.8 0 

egl-s1-A 140 190 5018 42.8 5018 5065 5035.2 0 

egl-s1-B 140 190 6388 43.6 6388 6502 6433.4 0 

egl-s1-C 140 190 8518 46.9 8518 8535 8521.5 0 

egl-s2-A 140 190 9884 49.4 9936 9997 9974.7 0.5 

egl-s2-B 140 190 13100 46.5 13140 13280 13186.4 0.3 

egl-s2-C 140 190 16425 48.4 16558 16680 16625.9 0.5 

egl-s3-A 140 190 10220 51.3 10249 10323 10306.0 0.3 

egl-s3-B 140 190 13682 49.8 13762 13839 13802.4 1.5 

egl-s3-C 140 190 17230 49.6 17266 17312 17281.1 0.4 

egl-s4-A 140 190 12268 54.2 12325 12638 12513.5 0.5 

egl-s4-B 140 190 16321 55.5 16386 16490 16428.2 0.6 

egl-s4-C 140 190 20517 56.3 20911 21097 21036.6 1.9 

Avg.    33.2 9781.5 9869.8 9825.0 0.3 

 

at 0.3. To give a comparison of the performance of each 

algorithm, we summarize the results in Table 6. Our ACO 

can reach 16 best known solutions, which is the most 

among all compared algorithms, though the average gap 

performance is not the lowest. The MA is the fastest 

algorithm for the egl data set, but it only can provide 7 best 

known solutions. The average gap for MA is much higher 

than our ACO. Our ACO outperforms BACO in terms of 

solution quality and computational times. ANT_12 

provides lower average gap but needs longer computational 

times than our ACO.  

From tables 2, 4, and 6 we can conclude that our ACO 

can provide competitive performance against other state-of-

the-art algorithms. Comparing to the other two ACO 

algorithms, BACO and ANT_12, our ACO can provide 

better solution quality. The CPU time is much shorter than 

these two ACO algorithms in larger size instances. Though 

the computational time is not the fastest one, we can obtain 

best known solutions in 73 out of 81 instances, which is the 

most among all compared algorithms.  



Edited by Fan & Chang 

 

 

 

Table 6: Comparison of computational results for various algorithms of egl data set. 

 

Method Reference  Num Gap CPU Computer  Mflop/s ST 

BACO Lacomme et al. (2004b) 1/24 2.14 2341.3 Pentium III 800 Hz 138 4.20 

MA Lacomme et al. (2004a) 7/24 1.74 351.4 Pentium III 1.0 GHz 192 0.84 

TSA Brandão and Eglese (2008) 5/24 1.54 291.4 Pentium Mobile 1.4Ghz 352 1.27 

VNS Polacek et al. (2008) 11/24 0.15 503.2 Pentium IV 3.0GHz 1573 10.30 

GA Lacomme et al. (2006) 2/24 1.73 267.0 Pentium IV 1.8 GHz 292 1.01 

ANT_12 Santos et al. (2010) 11/24 0.18 503.0 Pentium III 1.0 GHz 192 1.26 

ACO Our  16/24 0.30 33.2 Intel Core i5-2400 3.10GHz 2426 1.00 

 

5. CONCLUSION 
 

The capacitated arc routing problem (CARP) attracts 

more attention due to its wide range of real world 

applications in recent years. We developed an ant colony 

optimization (ACO) algorithm for effectively solving 

CARP in this paper. The results presented demonstrate that 

ACO can provide good performance over three sets of 81 

popular CARP benchmark instances. Specifically, ACO 

with a single parameter setting outperforms the compared 

algorithms in terms of number of best known solutions that 

can be found. We believe that our ACO can be adapted to 

handle other CARP variants with slight modifications of 

the solution encoding and decoding approaches.  

In the future, we would like to incorporate other 

heuristic, such as path relinking, as a form of intensification 

solution. Furthermore, we would apply the ACO to real 

world problems which might need intermediate refill 

facilities, such as street sweeping and washing.  

 

REFERENCES 
 

Belenguer, J.M. and E. Benavent. (2003) A cutting plane 

algorithm for the capacitated arc routing problem, 

Computers and Operations Research, 30, 705-728. 

Benavent, E., Campos, V., Corberan, E., and Mota, E. 

(1992) The capacitated arc routing problem: Lower 

bounds. Networks, 22, 669-690. 

Beullens, P., Muyldermans, L., Cattrysse, D., and Van 

Oudheusden, D. (2003) A guided local search heuristic 

for the capacitated arc routing problem. European 

Journal of Operational Research, 147, 629-643. 

Brandão, J. and Eglese, R. (2008) A deterministic tabu 

search algorithm for the capacitated arc routing 

problem. Computers & Operations Research, 35, 1112-

1126. 

Chandra Mohan, B. and Baskaran, R. (2012) A survey: Ant 

colony optimization based recent research and 

implementation on several engineering domain, Expert 

Systems with Applications, 39, 4618-4627. 

Corberán, Á . and Prins, C. (2010) Recent results on arc 

routing problems: An annotated bibliography, Networks, 

56, 50-69. 

Corberán, Á . and Laporte, G. (2014) Arc routing: Problems, 

methods, and applications, MOS-SIAM Series on 

Optimization, SIAM, Philadelphia, PA, USA. 

DeArmon, J.S. (1981) A comparison of heuristics for the 

capacitated Chinese postman problem, Master’s Thesis, 

The University of Maryland at College Park, MD, USA. 

Dongarra, J. Performance of Various Computers Using 

Standard Linear Equations Software, Report CS-89-85, 

University of Tennessee, 2014. 

Dorigo, M., Maniezzo, V. and Colorni, A. (1996) Ant 

system: Optimization by a colony of cooperating agents, 

IEEE Transactions on Systems, Man and Cybernetics 

Part B, 26, 29-41. 

Dorigo, M. and Stützle, T. (2004) Ant Colony Optimization, 

Bradford Books, MIT Press, Cambridge, MA. 

Dror, M. (2000) Arc routing: Theory, solutions and 

applications, Kluwer Academic Publishers, Boston, 

MA, USA. 

Eglese, R.W. (1994) Routing winter gritting vehicles. 

Discrete Applied Mathematics, 48, 231-244. 

Eydi, A. and Javazi, L. (2012) A novel heuristic method to 

solve the capacitated arc routing problem, International 

Journal of Industrial Engineering Computations, 3, 

767-776. 

Golden, B.L., DeArmon, J.S. and Baker, E.K. (1983) 

Computational experiments with algorithms for a class 

of routing problems, Computers & Operations 

Research, 10, 47-59. 

Golden, B.L. and Wong, R.T. (1981) Capacitated arc 

routing problem, Networks, 11, 305-315. 

Hertz, A., Laporte, G. and Mittaz, M. (2000) A tabu search 

heuristic for the capacitated arc routing problem, 

Operations Research, 48, 129-135. 

Hertz, A. and Mittaz, M. (2001). A variable neighborhood 

descent algorithm for the undirected capacitated arc 

routing problem, Transportation Science, 35, 425-434 . 



 

 

 

Lacomme, P., Prins, C. and Ramdane-Cherif, W. (2004a) 

Competitive memetic algorithms for arc routing 

problems, Annals of Operations Research, 131, 159-

185. 

Lacomme, P., Prins, C. and Tanguy, A. (2004b) First 

competitive ant colony scheme for the CARP. Research 

Report LIMOS/RR-04-21. 

Mei, Y., Tang, K. and Yao, X. (2009) A global repair 

operator for capacitated arc routing problem, IEEE 

Transactions on Systems, Man, and Cybernetics, Part B: 

Cybernetics, 39, 723-734.  

Peran, W.L. (1991) Augment-insert algorithms for the 

capacitated arc routing problem, Computers & 

Operations Research, 18, 189-198. 

Polacek, M., Doerner, K. F., Hartl, R.F. and Maniezzo, V. 

(2008) A variable neighborhood search for the 

capacitated arc routing problem with intermediate 

facilities, Journal of Heuristics, 14, 405-423 . 

Santos, L., Coutinho-Rodrigues, J. and Current, J.R. (2010) 

An improved ant colony optimization based algorithm 

for the capacitated arc routing problem, Transportation 

Research Part B, 44, 246-266. 

Tang, K., Mei, Y. and Yao, X. (2009) Memetic algorithm 

with extended neighborhood search for capacitated arc 

routing problems, IEEE Transactions on Evolutionary 

Computation, 13, 1151-1166. 

Ting, C.J. and Chen, C.H. (2013) A multiple ant colony 

optimization algorithm for the capacitated location 

routing problem, International Journal of Production 

Economics, 141, 34-44. 

Ulusoy, G. (1985) The fleet size and mix problem for 

capacitated arc routing, European Journal of 

Operational Research, 22(3): 329-337.  

Usberti, F.L., França, P.M., and França, A.L.M. (2013) 

GRASP with evolutionary path-relinking for the 

capacitated arc routing problem, Computers & 

Operations Research, 40, 3206-3217. 

Wøhlk, S. (2005) Contributions to arc routing, Ph.D. 

dissertation, University of Southern Denmark, Arhus, 

Demark. 

Wøhlk, S. (2008) A decade of capacitated arc routing, In 

The vehicle routing problem: Latest advances and new 

challenges, Golden, B., Raghavan, S. and Wasil, E. 

(eds.), Springer, New York, 29-48. 


