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Abstract. The number of inputs and outputs factors has significant impacts on the production function estimation by data 

envelopment analysis (DEA). That is, “curse of dimensionality” is an issue when using a small number of observations 

for high-dimensional frontier estimation. The study conducts a data generating process (DGP) to argue the typical “rule 

of thumbs”, e.g. the number of observations should be at least larger than twice of the number of inputs and outputs, used 

in DEA is ambiguous and may lead to large deviations in technical efficiency. The paper proposes a LASSO variable se-

lection technique usually used in data mining for extracting significant factors in the formulation of sign-constrained 

convex nonparametric least squares (CNLS) as DEA, and the results show that the proposed LASSO-CNLS method is 

useful for providing guidelines of dimension reduction in DEA. 
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1. INTRODUCTION 
 

Data envelopment analysis (DEA) is a nonparametric 

approach for estimating frontiers by decision making units 

(DMUs). As we all known, when performing DEA analysis, 

there are several advantages to having larger data sets. 

However, in a general situation, it is time-consuming and 

costly to collect more data sets. In this case, if we use a 

smaller size of data set, we will face the problem of the 

curse of dimensionality which is a phenomena happens in 

high-dimensional spaces. That is, using a small size sample 

(i.e., DMUs) for high-dimensional frontier estimation. If 

doing that, there is a problem of imprecise estimation of 

production frontiers because most of the efficiency score of 

each DMU is going to be one. Therefore, variable selection 

raises an issue. 

 

Variable selection aims to remove the less important 

variables and keep the significant inputs and outputs. By 

removing the unimportant variables, we can estimate our 

production frontiers more precisely and release the problem 

of the curse of dimensionality as well. Nataraja and John-

son (2011) also promoted variable selection methods in 

DEA and showed that DEA loses explanatory power as the 

dimensional space increases. This study proposes a LASSO 

variable selection technique for extracting significant fac-

tors. 

 

The paper is organized as follows. Section 2 presents 

the rule of thumb of minimal requirements in number of 

observations and a validation of the insufficient minimal 

requirements. Section 3 develops the proposed LASSO-

convex nonparametric least square (CNLS) method and 

estimates the accuracy of production frontiers by calculat-

ing Mean Square Error (MSE). And then we’ll give the 

conclusion and future study in section 4. 

 

2. LITERATURE REVIEW 
 

In DEA literatures, it’s better to have larger data sets, 

but there are some criteria proposed for the minimal re-

quirements. There are some“rule of thumbs” proposed in 

literatures (e.g., the number of observations should be at 

least larger than twice of the number of inputs and outputs). 

Table 1 shows the promotion about minimal size of data 

sets from different scholars, where m means the total num-

ber of outputs and n means the total number of inputs. 

Boussofiane et al. (1991) said that for effective discrimina-



 

tion and the flexibility in the choice of weights, the number 

of inputs and outputs which is selected has to be smaller 

than the total number of DMUs. A specific ratio of an input 

to an output is large enough can own all its weight and be-

come efficiency. The total number of such ratios will be the 

product of the number of efficient units. Hence the minimal 

number of DMUs should multiply the number of inputs and 

outputs. 

 

Golany and Roll (1989) expounded that a larger set of 

units enables a sharper identification of typical relations 

between inputs and outputs in the set. A rule of thumb es-

tablished in the paper is that the number of units should be 

at least twice the number of inputs and outputs considered. 

Bowlin (1998) elaborated that a general rule of thumb is 

that three decision making units are needed for each input 

and output variable used in the model for the purpose of 

insuring sufficient degree of freedom for a meaningful 

analysis. Dyson (2001) suggested that to achieve a reason-

able level of discrimination, the DMUs need the number of 

units to be at least two times of the number of inputs multi-

ply the number of outputs.  For instance with a three in-

puts and four outputs model, Boussofiane et al. (1991) rec-

ommended 12 DMUs, Golany and Roll (1989) suggested 

14 DMUs, Bowlin (1998) recommended 21 DMUs, and 

Dyson (2001) suggested 24 DMUs. 

 

Table 1: Minimal Size of Data Set Promoted from different 

scholars 

Scholar Promotion 

Boussofiane et al. (1991) m*n 

Golany and Roll (1989) 2(m*n) 

Bowlin (1998) 3(m*n) 

Dyson et al. (2001) 2m*n 

 

Nataraja and Johnson (2011) used four methods to tes-

tify the selection process in DEA, including efficiency con-

tribution measure (ECM), principle component analysis 

(PCA-DEA), a regression-based test (RB), and bootstrap-

ping. The result showed that in higher correlated inputs 

(larger than 0.8) with smaller data set (less than 300 DMUs) 

PCA-DEA performs well. Otherwise, RB and ECM is a 

good choice under lower correlation (smaller than 0.2) and 

larger data set (at least 300 DMUs). However, the imple-

ment of these methods is time-consuming and PCA trans-

forms multiple variables into PCs for dimension reduction 

rather than removing the original variable. 

 

This study proposes a LASSO variable selection tech-

nique for variable selection in DEA when dimension is high 

or data set is limited. The reason to propose LASSO meth-

od is because LASSO is a regression-based method and 

also DEA can be regarded as a sign-constraint CNLS for-

mulation (Kuosmanen and Johnson, 2010) which builds 

efficient frontier via regression hyperplane. Thus, LASSO 

fits the variable selection in DEA. Furthermore, LASSO 

provides the slope and coefficients of regression hyperplane 

and shrink the coefficients to zero when penalty parameter 

becomes larger. This investigates the effect of input factors 

on the production function and implies the production func-

tion can be rationally estimated with fewer variables. 

 

3.  Curse of Dimensionality in DEA 
 

This study is separated into two parts. The first part 

provides a proof of an insufficient number of DMUs (i.e., 

observations) causing the issue of curse of dimensionality. 

The second part proposes the LASSO-CNLS method for 

dimension reduction. 

 

3.1 A Validation of Insufficient DMUs 
 

In this section, we will illustrate our data generating 

process (DGP) and then argue the insufficient of typical 

rule of thumbs by comparing the MSE in different dimen-

sions. 

 

3.1.1 Data Generating Process (DGP)  
 

In data generation, we follow Nataraja and Johnson 

(2011) and randomly generate inputs (𝑥𝑖) and inefficiency 

term (𝜇). As the paper suggested, the values for the inputs 

are independently and identically distributed (i.i.d.) and 

generated from a uniform distribution on the interval (10, 

20), and the inefficiency term (𝜇) is half-normal with mean 

zero and variance 0.7. This study uses Cobb-Douglas pro-

duction function VRS model to calculate our output, y 

and 𝑦𝑡𝑟𝑢𝑒. Parameter 𝑦𝑡𝑟𝑢𝑒 is the true frontier which is 

not affected by noise while y represents the output that is 

affected by noise. An example can be seen in Figure 1. True 

production function (𝑦𝑡𝑟𝑢𝑒) should be a “smooth” produc-

tion function passing through the “origin”. Frontier y will 

be lower than 𝑦𝑡𝑟𝑢𝑒 because of the noise. And we try to 

get closer to the true frontier by adding our number of ob-

servations. Eq. 1 shows Cobb-Douglas production function 

y. Eq. 2 is the true production function that we assumed. 

Here, i is the index of input, k is the index of observation, n 

is the total number of input, 𝑥𝑖 means 𝑖𝑡ℎ  input, 𝜇 is the 

inefficiency term and e is Euler’s number. 

𝑦 = ∏ 𝑥
𝑘𝑖

(
1

𝑛+1
)𝑛

𝑖=1 ∗ 𝑒−𝜇  , ∀𝑘 (1) 

𝑦𝑡𝑟𝑢𝑒 = ∏ 𝑥
𝑘𝑖

(
1

𝑛+1
)
 ,   ∀𝑘𝑛

𝑖=1  (2) 



 

Table 2: MSE value in different observations of each dimension 

Dimension = 4 Dimension = 5 Dimension = 6 Dimension = 7 

observation MSE observation MSE observation MSE observation MSE 

12 5.302 12 9.014 12 12.5 12 16.013 

25 3.481 25 6.807 25 9.676 25 13.291 

50 2.434 50 4.79 50 6.988 50 10.407 

100 1.442 100 3.104 100 5.454 100 7.927 

200 0.896 200 2.121 200 3.855 200 6.119 

300 0.65 300 1.632 300 2.937 300 4.865 

500 0.455 500 1.166 500 2.355 500 3.866 

1000 0.278 1000 0.717 1000 1.538 1000 2.682 

Dimension = 8 Dimension = 9 Dimension = 10 Dimension = 20 

observation MSE observation MSE observation MSE observation MSE 

12 19.1 12 21.767 12 23.163 12 32.315 

25 15.814 25 18.745 25 21.507 25 32.156 

50 13.404 50 16.037 50 18.489 50 32.054 

100 10.878 100 13.954 100 16.727 100 31.615 

200 8.359 200 11.065 200 13.799 200 30.675 

300 6.904 300 9.321 300 12.284 300 30.25 

500 5.676 500 7.994 500 10.253 500 29.352 

1000 4.115 1000 5.893 1000 8.0374 1000 27.7476 

 

 
Figure 1: Difference between y and 𝑦𝑡𝑟𝑢𝑒  

(Lee and Johnson, 2015) 

 

After finishing generating process, we calculate the 

efficiency by DEA output-oriented dual VRS model which 

is shown in Eq. 3. 

Max θ𝑟  

Subject to 

∑ 𝜆𝑘 ∗ 𝑥𝑘𝑖 ≤ 𝑥r𝑖
𝑝
𝑘=1 , ∀i 

∑ 𝜆𝑘 ∗ 𝑦𝑘𝑗 ≥ θ𝑟 ∗ 𝑦r𝑗
𝑝
𝑘=1 , ∀j 

∑ 𝜆𝑘 = 1
𝑝
𝑘=1  (3) 

𝜆𝑘 ≥ 0 

 

Where r indicates one specific observation, and r is 

alias of index k. 𝜃 is a decision variable for efficiency 

estimation. If 𝜃 = 1, then the DMU is efficient; otherwise 

it is inefficient if 𝜃 > 1. 𝜆𝑘 is a decision variable repre-

senting the intensity multiplier for linear combination of 

DMUs. Index p is the total number of observations and j is 

the index of output. The first constraint and the second con-

straint represent input and output constraints. The third 

constraint is used for convex combination of DMUs repre-

senting the variable returns of scale (VRS) DEA. The final 

constraint is non-negativity constraint. 

 

3.1.2 MSE Calculation to Prove Inadequate DMUs 

 

We calculate the efficiency when dimension is 4, 5, 6, 

7, 8, 9, 10 and 20 separately. Dimension is 4 means that we 

have 3 inputs and 1 output, and dimension equals 5 means 

we have 4 inputs and 1 output and so on. In each dimension, 

we give different number of observations (12, 25, 50, 100, 

200, 300, 500 and 1000) and run 100 times of replication 

and then take the average MSE. Eq. 4 shows the formula of 

MSE. 

𝑀𝑆𝐸 =
∑ [𝑦𝑟

𝑡𝑟𝑢𝑒−(θ𝑟∗𝑦𝑟)]
2𝑝

𝑟=1

𝑛
 (4) 

The MSE in different observations of each dimension 

is shown in Figure 2 and Table 2. In Figure 2, we can find 

out that MSE decreases exponentially in each dimension 

while observations increase. Therefore, the minimal re-

quirements scholars promoted are not sufficient and the 

data set should be increased exponentially while the dimen-

sion become higher. Table 2 shows the MSE value in detail.  

 

 



 

 
Figure 2: MSE compare in chart 

 
3.2 A New Model for Dimension Reduction 
 

In this section we will first introduce the LASSO vari-

able selection technique and prove the formulation of sign-

constrained convex nonparametric least squares (CNLS) as 

DEA. In the last of this section, we will show how the new 

model selects the significant variables. 

 

3.2.1 Introduction of LASSO 
 

LASSO (Tibshirani, 1996) is a common technique for 

variable selection because of its maintaining prediction 

accuracy and discovering relevant variables. A good selec-

tion procedure should have some oracle properties and also 

continuous shrinkage. However, LASSO has been shown 

inconsistent results in some scenarios. Besides, LASSO is 

sensitive to outliers (Zou, 2006). 

 

    LASSO is a variant of ridge regression which shrinks 

coefficients by imposing penalty on their size (Hastie, Tib-

shirani and Friedman, 2008). The formulation about ridge 

regression can be seen in Eq. 5. 

𝛽𝑟𝑖𝑑𝑔𝑒 = argmin {
1

2
(∑ 𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑃
𝑗=1 )2𝑁

𝑖=1 + 𝜆 ∑ 𝛽𝑗
2𝑃

𝑗=1 }  (5) 

 

The concept of LASSO is that it uses penalty term to 

shrink coefficients of each variable. The formula is shown 

in Eq. 6. By increasing the value of lambda, we can shrink 

coefficients of less important variables to 0, so as to get 

significant variables. 

𝛽𝑙𝑎𝑠𝑠𝑜 = argmin {
1

2
(∑ 𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑃
𝑗=1 )2𝑁

𝑖=1 + 𝜆 ∑ |𝛽𝑗|𝑃
𝑗=1 }  (6) 

 

    An example about the difference between ridge re-

gression and LASSO is shown in Figure 3 and 4 (Hastie, 

Tibshirani and Friedman, 2008). Ridge regression is a 

model with proportional shrinkage while LASSO penalizes 

𝛽 and truncates at zero. Figure 3 describes an example of 

ridge regression in prostate cancer. The words on the right 

hand side of the figure are variables (e.g., lcavol, svi 

lweight, and so on). It is important to say that df(𝜆) = p 

when 𝜆 = 0  and df(𝜆) → 0  when  𝜆 → ∞ . Therefore, 

while 𝜆 value becomes higher (i.e., df(𝜆) gets lower), the 

coefficient of each variable shrinks. Figure 4 illustrates an 

example of LASSO in prostate cancer. When 𝜆 value be-

comes higher (i.e., shrinkage factor gets lower), the coeffi-

cient of each variable shrinks and truncates at zero. 

 

 
Figure 3: An example of ridge regression  

(Hastie et al., 2008) 

 

 

Figure 4: An example of lasso (Hastie et al., 2008) 
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3.2.2 DEA As a Sign-constrained CNLS 
 

Kuosmanen and Johnson (2010) proved that DEA is a 

“sign-constrained” CNLS when we add 𝜀𝑘 < 0 in CNLS 

model. Before the combination of Lasso and sign-

constrained CNLS, we use numerical experiment to verify 

it. When dimension equals to 10, we calculate the MSE of 

original DEA model and sign-constrained model in differ-

ent observations (12, 25, 50 and 100). Repeating for 100 

times and taking the average MSE in different observations. 

The result can be seen in Table 3. 

 

Table 3: Comparison between DEA model and Sign-

constrained CNLS model 

DEA model Sign-constrained CNLS 

observations MSE observations MSE 

12 23.558 12 23.558 

25 21.6 25 21.6 

50 18.159 50 18.163 

100 16.095 100 16.081 

 
3.2.3 LASSO-CNLS model 
 

In this section we apply the concept of LASSO tech-

nique into “sign-constrained” CNLS model and try to re-

duce our dimensions without losing the explanatory power 

of our data set. The formulas can be seen in Eq. 7. 

𝑀𝑖𝑛 𝜀𝑘
2 + 𝜆 ∑ ∑ 𝛽𝑘𝑖

𝑛

𝑖=1

𝑝

𝑘=1
 

Subject to 

𝑦𝑘 = 𝛼𝑘 + ∑ 𝛽𝑘𝑖
𝑛
𝑖=1 ∗ 𝑥𝑘𝑖+𝜀𝑘 , ∀𝑘 (7) 

𝛼k+∑ 𝛽𝑘𝑖
𝑛
𝑖=1 *𝑥𝑘𝑖 ≤ 𝛼ℎ+∑ 𝛽ℎ𝑖

𝑛
𝑖=1 *𝑥𝑘𝑖 , ∀k, h and k ≠ h 

𝜀𝑘 < 0 , ∀k 

𝛽𝑘𝑖 ≥ 0 , ∀k, i  

 

Where 𝜀𝑘 is the composite error that represents the 

deviation of observation k from the estimated function. 

Decision variables 𝛼𝑘 and 𝛽𝑘𝑖 characterize the intercept 

and slope parameters regarding the marginal products of 

the inputs for each observation. The objective function min-

imizes the sum of the square with respect to the disturbance 

terms. The first equality constraint represents a basic linear 

regression for each observation k, that is, there are m dif-

ferent regression lines estimated rather than one specific 

line as in OLS. The second inequality constraint imposes 

concavity using Afriat inequalities which are the key points 

in modeling concavity constraints in multiple regression 

setting. The third inequality imposes the negative sign on 

error for formulating DEA frontier. The last constraint im-

poses monotonicity of the inputs on the underlying un-

known function. 

 
Due to multiple solutions in this model, we propose a 

variant of the model suggested by Kuosmanen and Johnson 

(2010) to address the issue. The formulation is shown as Eq. 

8 for one specific observation r. 

𝑀𝑖𝑛 𝛼 + ∑ 𝛽𝑖 ∗ 𝑥𝑟𝑖

𝑛

𝑖=1
 

Subject to 

α + ∑ 𝛽𝑖 ∗ 𝑥𝑘𝑖 ≥ �̂�𝑘 + ∑ �̂�𝑘𝑖 ∗ 𝑥𝑘𝑖   , ∀𝑘𝑛
𝑖=1

𝑛
𝑖=1  (8) 

𝛽𝑖 ≤ ∑ �̂�𝑘𝑖

𝑝

𝑘=1
 , ∀i 

 

Where �̂�𝑘 and �̂�𝑘𝑖 are the optimal solution obtained 

from equation (7). The objective function minimizes the 

linear regression line for each specific observation because 

only the minimum bound satisfies monotonicity and con-

cavity properties. The first constraint is used for showing 

that the new regression line must larger than the regression 

line we obtained in equation (7). The second constraint 

ensures the new value of 𝛽𝑖 smaller than the value of �̂�𝑘𝑖 

that we obtained before. 

 

We calculate these two models sequentially in GAMS 

solver by increasing lambda (i.e., penalty) value each time 

so as to decrease the dimensions for ten times. In the fol-

lowing process, we calculate the MSE in each dimension of 

each replication. The result can be seen in Figure 5. In Fig-

ure 5, we let number of observations equal 25 and dimen-

sions equal 10 (i.e., 9 inputs and 1 output) and random gen-

erate data from Eq. 1 and Eq. 2 for ten times (i.e., data1, 

data2 and so forth). Each time we increase lambda value in 

order to decrease the dimensions. We calculate MSE in 

each dimension by Eq. 4 and give this chart. In Figure 6, 

we take the average of MSE calculated by these 10 replica-

tions in each dimension. In Figure 6, we can find that when 

dimensions reduced, the MSE decreased as well. It means 

that we eliminate the less important variables and get closer 

to the true frontier. 

 

 

 
 

 



 

 

Figure 5: MSE in each dimension of each replication 
 

 

Figure 6: Average MSE of each dimension 
 
4. Conclusion 
 

By combing LASSO and sign-constrained CNLS, we 

successfully remove some unimportant variables for ad-

dressing curse of dimensionality. That is, we keep more 

critical variables. Therefore, if we compare MSE between 

the variable LASSO chosen and another variable which 

was not picked, MSE of previous one should be lower. 
 

In Table 4, there is a comparison about what we men-

tioned above. The variable Lasso chose in the final is in 

bold while others are not. 
 

We can find out that though Lasso may not do well in 

choosing the most significant variable since it is a bias es-

timator, it provide an effective way for dimension reduction 

efficiently. 
 

In the future work, due to a bias estimate chosen by 

LASSO estimator, our suggestion is to use adaptive LAS-

SO which tries to give larger penalty to zero coefficients 

and smaller penalty to nonzero coefficients and tries to de-

crease the bias of estimation and increase selection accura-

cy (Zou, 2006). 
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Table 4: MSE comparison in different variables 

Data1 MSE Data2 MSE Data3 MSE Data4 MSE Data5 MSE 

x8 0.261 x9 0.385 x9 1.228 x9 0.277 x7 0.4 

x6 0.363 x6 0.953 x7 1.396 x5 0.377 x6 0.494 

x7 0.634 x5 0.989 x1 2.516 x2 0.416 x4 0.814 

x9 0.846 x1 1.184 x8 3.952 x8 1.433 x3 1.038 

x1 0.874 x7 1.401 x3 5.011 x6 1.891 x2 1.089 

x2 2.042 x2 1.517 x2 5.128 x4 2.478 x9 1.365 

x3 3.297 x8 1.619 x5 5.324 x1 2.479 x1 1.958 

x4 4.644 x4 1.704 x4 6.386 x3 3.017 x8 2.841 

x5 5.403 x3 1.747 x6 7.399 x7 3.496 x5 3.87 

Data6 MSE Data7 MSE Data8 MSE Data9 MSE Data10 MSE 

x2 0.483 x2 1.104 x4 0.422 x8 1.016 x5 0.25 

x7 0.715 x6 1.121 x3 0.743 x4 1.387 x2 0.274 

x6 1.017 x1 1.519 x6 1.222 x9 1.752 x4 0.289 

x1 1.562 x7 1.705 x2 1.317 x5 1.838 x1 1.187 

x5 1.638 x3 1.946 x7 2.386 x3 2.57 x8 1.258 

x9 3.412 x8 2.666 x9 2.616 x6 2.86 x6 2.216 

x4 3.549 x4 2.755 x8 2.819 x2 2.883 x7 2.228 

x8 3.593 x9 2.811 x1 3.889 x7 4.094 x9 2.272 

x3 3.628 x5 3.81 x5 7.358 x1 5.111 x3 2.424 

 
 


