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Abstract. Emissions trading (or cap and trade) is a market-based approach used to control the emissions by 

providing economic incentives for achieving reductions in the emissions of pollutants. Marginal abatement 

costs, also termed shadow prices of air pollution emissions, provide valuable guidelines to support 

environmental regulatory policies for CO2, SO2 and NOx, the key contributors to climate change, smog, and 

acid rain in China. This study estimates the marginal abatement cost of undesirable outputs with respect to 

Nash equilibrium on the stochastic semi-nonparametric frontier (i.e., stochastic semi-nonparametric 

envelopment of data, StoNED) in oligopolistic market. Considering an endogenous price function of 

electricity, the mixed complementarity problem (MiCP) is formulated to identify the Nash equilibrium in a 

production possibility set. We apply the proposed method to a case study of China coal-fired power plants in 

2013 and conclude that StoNED provides a robust frontier not sensitive to the outlier and estimating the 

shadow prices corresponding to the Nash equilibrium is validated in non-perfectly competitive market. 
 

Keywords: marginal abatement costs, emissions trading, Nash equilibrium, stochastic semi-nonparametric 

frontier, coal-fired power plant 

 

 

1. INTRODUCTION 
 

Electricity generation by burning coal usually 

produces several byproduct pollutants such as carbon 

dioxide (CO2), sulfur dioxide (SO2) and nitrogen oxide 

(NOx), and these pollutants cause of greenhouse effect, 

acid rain and smog problem. To address problem, the 

Greenhouse Development Rights (GDRs) was developed 

and formed a framework which show how the costs of 

rapid climate change can be shared fairly among all 

countries (Berk and den Elzen, 2001). Based on scientific 

and political understandings of GDR, it contributed to the 

foundation of the United Nations Framework Convention 

on Climate Change (UNFCCC) in 1992. UNFCCC was an 

international negotiation to stabilize greenhouse gas 

concentrations and prevent dangerous anthropogenic 

climate change since 1992. It has 198 parties until Jan. 

2013 and the parties to the convention have met annual 

emission target from 1995 in Conferences of the Parties 

(COP) to assess progress in dealing with climate change. In 

1997, the Kyoto Protocol was adopted to link UNFCCC 

and established legally binding obligations for developed 

countries to reduce their greenhouse gas emissions. In this 

protocol each party was regulated under the emission 

limitation or reduction commitment, e.g. US agreed to 

reduce 7% emission of the base year 1990, by 2012. 

However, Kyoto Protocol seemed to be a failure since the 

developed nations cannot meet the targets that they should 

reduce emissions by 5.2% below 1990 levels by 2012 in 

Annex 1 (King et al., 2011). To rescue the Kyoto Protocol, 

parties to the Kyoto Protocol have agreed to take on new 

carbon-cutting targets and run a second commitment period 

of emissions reductions from 2013 to 2020 at the 2012 

Doha climate change conference. 

Since climate change is a real concern of the 

international community. Lots of economists have 

discussed market approaches to environmental externalities 

including emissions taxes and permit trading systems. In 

general, the overall volume of greenhouse gases that can be 

emitted by the power plants and factories is limited by a 

'cap' on the number of emission allowances. Each 

allowance gives the holder the right to emit one tonne of 

CO2, the main greenhouse gas or the equivalent amount of 

pollutants. That is, if emissions reduction fails to meet the 

targets, parties may participate in a permit trading market. 

To avoid the emission reduction causing the damage of 

national economy, the marginal abatement costs (MAC) or 

shadow prices of pollutant are investigated to represent the 

costs reducing one extra unit of pollutant. The emission 

trading mechanism is based on the seminal study regarding 



Coase theorem (Coase, 1960). Cap and trade is a market-

based approach used to control the emissions by providing 

economic incentives for achieving reductions in the 

emissions of pollutants. He argued that without transaction 

cost the bargaining will lead to an efficient outcome 

regardless of the initial allocation of property rights if trade 

in an externality. Following his work, Dales (1968) 

proposed the conceptual model of emission trading market 

with respect to pollutant. Given the MAC curve and 

marginal damages curve, the market will achieve the 

equilibrium in the presence of externalities. The emission 

trading builds up the market incentive and achieves cost 

effectiveness, that is, the benefits obtained from trading 

between parties will be larger than the benefit generated by 

emission reduction individually (Montgomery, 1972).  

China is one of the CO2 major emitters. In 2012 China 

was the largest contributor to carbon emissions from fossil 

fuel burning and cement production, and responsible for 25 

percent of global carbon emissions. In particular, 

manufacturing and power generation are the major sectors 

contributing to China's carbon emissions, together these 

sectors accounted for 85 percent of China's total carbon 

emissions in 2012 (Liu, 2015). In addition, in 2013-2015, 

China also struggled from the hazardous smog with the 

high concentration of PM 2.5, and its particulate matter that 

is small enough to lodge deep into the lungs and enter the 

bloodstream, causing respiratory infections, cardiovascular 

disease, asthma, lung cancer, etc. A vast area from Xian in 

central China to Harbin in the northeast would also be 

badly hit. In the worst case, Liaoning province reach 1,400 

micrograms per cubic metre, which is 56 times than the 

maximum safe level defined by the World Health 

Organization (WHO), on Nov. 8, 2015. In fact, the two key 

components of urban smog and acid rain are emissions of 

SO2 and NOx (Zhang and Samet, 2015). Therefore, China 

claimed starting in 2009 to decrease its CO2 emission per 

unit of GDP (i.e., carbon intensity) by 40-45% by 2020 

with 2005 as the reference year. Then, the government of 

China has set the target to reduce carbon intensity by 17% 

till 2015 compared to that in 2010. This paper takes the 

North region and the Northeast region in China as a case 

for estimation MACs of CO2, SO2, and NOx emissions in 

the coal-fired power plants. 

To support emission trading policies the MACs of 

pollutants are used as a reference value to the allowance 

price in the emission trading market (Lee et al., 2002). 

Many previous studies have estimated the shadow prices of 

pollutants or undesirable outputs. Parametric and 

nonparametric approaches were developed to estimate 

shadow prices. In fact, shadow price is a differentiable 

characteristic of production function. Parametric method is 

commonly used because specified production function is 

differentiable everywhere. Färe et al. (1993) employed an 

output distance function with the translog functional form 

and used linear programming to solve for the combination 

of parameters that yields the best-fit distance function to 

estimate a shadow price of four pollutants generated by 

pulp and paper mills in Michigan and Wisconsin of 1976. 

Coggins and Swinton (1996) took the same approach to 

estimate the SO2 shadow price of Wisconsin coal-burning 

uiility plants in 1990–1992, and the result shows that the 

average shadow price was above some observed allowance 

prices in the trading market. Färe et al. (2005) used a 

quadratic directional output distance function to estimate 

both technical efficiency and a shadow price of SO2 for the 

U.S. electric utilities in 1993 and 1997. The result showed 

that the emission trade became difficult since the shadow 

price of SO2 increased from 1993 to 1997. They also 

measured the output elasticity of substitution between 

electricity and SO2 and found that inefficiency reduction 

(i.e., productivity improvement) benefited the emissions 

reduction. Marklund and Samakovlis (2007) evaluated the 

Burden-Sharing Agreement (BSA) which redistributes the 

emission reduction target in European Union (EU) under 8% 

reduction of 6 greenhouse gases by during 2008-1012 

described in Kyoto Protocol, and used directional output 

distance function to estimate MAC based on the production 

data of EU member states for 1990–2000. 

Alternatively, a nonparametric approach (e.g., data 

envelopment analysis, DEA) can estimate production 

function without specified functional form. A directional 

distance function is commonly used to investigate the 

shadow price on efficient frontier. Boyd et al. (1996) used 

DEA to estimate efficient frontier and the MAC of SO2 for 

29 coal-burning utilities in U.S. electric power industry. 

The result showed some positive shadow prices against our 

intuition, and they claimed that this was because of the lack 

of uniformity in environmental regulations in 1989. Lee et 

al. (2002) showed that the shadow price of a pollutant is the 

product of the inefficiency correction factor and the slope 

to the frontier, where the inefficiency correction factor is 

the inefficiency ratio between undesirable output and 

desirable output, which maps an inefficient point to the 

corresponding point on the production frontier. They 

accounted for the technical inefficiency to derive the 

shadow prices of SO2, NOx and total suspend particulates 

(TSP) for Korean coal- and oil-burning power plants during 

the periods 1990–1995. However, DEA estimator is 

sensitive to outliers and shadow price values equal to zero 

are common; in particular, DEA does not consider 

statistical noise and assumes the observations are assessed 

without error. To address this issue, Kuosmanen (2008) 

proposed convex nonparametric least squares (CNLS) 

approach which incorporates the merits of parametric and 

nonparametric approaches. Kuosmanen and Johnson (2010) 

have showed that DEA is a special case of CNLS with sign 

constraints on error terms. Mekaroonreung and Johnson 

(2012) used CNLS approach in two ways- with random 

noise and without random noise, to estimate the shadow 

prices of SO2 and NOx in US bituminous coal power plant 



boilers. The result showed that both SO2 and NOx shadow 

price estimated by CNLS taking account of noise term are 

in the reasonable ranges and comparable to the allowance 

market prices. 

The present study considers the oligopolistic market 

with endogenous price and proposes estimating the MAC 

of the Nash equilibrium benchmark (i.e., Nash-MAC 

hereafter) on the stochastic semi-nonparametric 

envelopment of data (StoNED) frontier to release some 

issues in the existing literatures.  

 

2. Nash Equilibrium Identified on DEA Frontier 

HEADING 
 

This section identifies the Nash equilibrium solution 

in production possibility set (PPS) estimated by the DEA 

with inputs, desirable outputs and undesirable outputs. Now 

consider a multiple-input and multiple-output production 

process. Let x ∈ ℝ+
|I|

 denote a vector of input variables, 

y ∈ ℝ+
|J|

 denote a vector of desirable output variables and 

b ∈ ℝ+
|Q|

 denote a vector of undesirable output variables 

for a production system. The PPS T is defined as T =
{(x, y, b): x can produce (y, b)} , i.e., (x, y, b) ∈ T . 

Assume T is a convex set. Let index i ∈ I represent the 

input, index j ∈ J the desirable output, index q ∈ Q the 

undesirable output, and index k ∈ K be the set of decision 

making unit (DMU) or firm index. Observations Xik 

represent the ith input level, Yjk the jth desirable output 

level, and Bqk the qth undesirable output level of firm k. 

In this study, we limit our model to single desirable output 

in power industry, i.e., electricity generation. 

In the power markets, to build a price function of 

desirable output, we consider an inverse demand function 

as PY(Ŷ) ∶= PY0 − κŶ where PY(∙) ≥ 0, Ŷ = ∑ ykk , PY0  

is a positive intercept and κ ≥ 0  indicates the price 

sensitive coefficient of desirable output. Apparently, the 

revenue function PY(Ŷ)yr is concave. For the undesirable 

output of the power market, i.e., environmental 

externalities, cap is used to control the emissions. Cap 

means a legal limit on the quantity of a certain type of 

emission an economy can emit in a period. We limit the 

feasible region of the undesirable quantity B̂q ≤ B̂q
CAP , 

where B̂q = ∑ bqkk  and B̂q
CAP is a constant representing 

the limit of total emissions. For the input of the power 

market, i.e., coal consumption, we assume a competitive 

input market and the price of input is a constant, Pi
X. 

Recall that the DEA estimator assumes that the 

desirable outputs are freely disposable (Fried et al., 2008); 

however, this property cannot be directly applied to 

undesirable outputs. Intuitively, we can reduce the level of 

the desirable output which in turn will result in a 

proportionate reduction of the undesirable outputs. In other 

words, the free (or strong) disposability assumption ignores 

the possibility to decrease undesirable outputs by down-

sizing the activity level, i.e., a proportional contraction of 

desirable outputs and undesirable outputs is feasible 

simultaneously. This property is termed “weak disposability” 

(Shephard, 1974). The following axioms are restated 

regarding production when undesirable outputs are also 

produced: 

Free (or strong) disposability of inputs and desirable 

outputs 

Given (x, y, b) ∈ T, if x′ ≥ x and 0 ≤ y′ ≤ y, then 

(x′, y′, b) ∈ T. 

Weak disposability of desirable outputs and 

undesirable outputs 

Given (x, y, b) ∈ T, if 0 ≤ ρ ≤ 1, then (x, ρy, ρb) ∈
T. 

To formulate the weak disposability, we introduce the 

Kuosmanen’s convex technology with undesirable outputs 

which follows the convexity axiom and builds the minimal 

weakly disposable technology (Kuosmanen and Podinovski, 

2009; Lee, 2015). Let λk  be the decision variable 

representing the intensity weights of the convex 

combination between firms, μk the decision variable for 

weak disposability property of Kuosmanen’s convex 

technology. The Kuosmanen’s convex technology T can 

be estimated as follows. 

T̃ =

{
 
 

 
 

(x, y, b)
|

|

∑ (λk + μk)Xikk∈K ≤ xi, ∀i ∈ I;

∑ λkYkk∈K ≥ y;

∑ λkBqkk∈K = bq, ∀q ∈ Q;

∑ (λk + μk)k∈K = 1;

λk, μk ≥ 0, ∀k ∈ K }
 
 

 
 

      (1) 

The first, second and third constraint refer to input 

constraint, desirable output constraint, and undesirable 

output constraint, respectively. Fourth constraint presents 

convex combination constraint and the last one is the 

nonnegativity constraint. 

Given index r representing one specific firm and an 

alias of index k , let xir , yr , and bqr  represent the 

decision variables for input i, single desirable output, and 

undesirable output q of one specific firm r. Let pY be 

the decision variable representing the clearing price of 

single desirable output. M is a large positive constant. The 

cap constraint B̂q ≤ B̂q
CAP of undesirable output is added 

into the model. We define our maximization model of Nash 

profit function (NPF) with respect to each firm restricted by 

DEA frontier as equation (2): 

NPFr
DEA∗ = max

yr,bqr,xir
(PY0 − κŶ)yr − ∑ Pi

Xxiri∈I   

s.t. ∑ (λkr + μkr)Xikk∈K ≤ xir, ∀i ∈ I;  

∑ λkrYkk∈K ≥ yr;  

∑ λkrBqkk∈K = bqr, ∀q                      (2) 

∑ (λkr + μkr)k∈K = 1;  

B̂q ≤ B̂q
CAP, ∀q ∈ Q;  

xir, yr, bqr, λkr, μkr ≥ 0, ∀i ∈ I, q ∈ Q, k ∈ K  



 

For the PPS estimated by DEA frontier with input and 

desirable output case, the Nash solution exists and is unique 

if profit function is strictly concave (Lee and Johnson, 

2015). We extend to undesirable output case, the NPF 

(PY0 − κŶ)yr − ∑ Pi
Xxiri∈I  is strictly concave on 

(xir, yr, bqr) ∈ T̃ enveloped by DEA frontier and it verifies 

the existence and uniqueness of Nash solution. Note that 

the profit function only considers the revenue of desirable 

output and cost of inputs since the price (i.e., MAC) of 

undesirable output is unknown variable we would like to 

estimate. That is, model (2) implies that firm’s productive 

behavior depends on physical profit maximization and 

pollutant emission is just a requirement rather than an 

objective function. This assumption conforms with the 

practice.  

 

Lemma 2.1: Consider an imperfectly competitive market 

with |K| firms, an inverse demand function PY(∙) that is 

strictly decreasing and continuously differentiable in yk, 

and an inverse supply function PX(∙)  that is strictly 

increasing (or a constant in our case) and continuously 

differentiable in xk . The profit function πk(xk, yk)  is 

concave and the variables xk, yk ≥ 0 , then (x∗, y∗) =

((x1
∗, y1

∗), (x2
∗ , y2

∗), … , (x|K|
∗ , y|K|

∗ ))  is a Nash equilibrium 

solution if and only if 

∇xkπk(x
∗, y∗) ≤ 0 and ∇ykπk(x

∗, y∗) ≤ 0, ∀k; 

xk
∗[∇xkπk(x

∗, y∗)] = 0 and yk
∗[∇ykπk(x

∗, y∗)] = 0, ∀k, 

where (xk
∗ , yk

∗ , bk
∗) ∈ T̃  and T̃  is estimated by the 

constraints of model (2). 

 

Proof: ignore here due to page limit. 

 

To solve for a Nash equilibrium associated with 

equation (2), the MiCP is built, where 

 μ1ir, μ2r, μ3qr, μ4r and μ5q  are Lagrange multipliers 

corresponding to each constraint (except nonnegativity 

constraint) in model (2). 

 

Then, using the first-order conditions, the MiCP is:  

0 ≤ xir ⊥ −Pi
X + μ1ir ≤ 0,    ∀i, r  

0 ≤ yr ⊥ P
Y0 − κŶ − κyr − μ2r ≤ 0,    ∀r  

0 ≤ bqr ⊥ μ3qr − μ5q ≤ 0,    ∀q, r  

0 ≤ λkr ⊥ −∑ μ1irXiki + μ2rYk − ∑ μ3qrBqkq − μ4r ≤

0,    ∀k, r  

0 ≤ μkr ⊥ −∑ μ1irXiki − μ4r ≤ 0,    ∀k, r  

0 ≤ μ1ir ⊥ ∑ (λkr + μkr)Xikk∈K − xir ≤ 0,    ∀i, r    (3) 

0 ≤ μ2r ⊥ yr −∑ λkrYkk∈K  ≤ 0,    ∀r  

∑ λkrBqkk∈K − bqr = 0, (μ3qr unrestricted),    ∀q, r  

∑ (λkr + μkr)k∈K − 1 = 0, (μ4r unrestricted),    ∀r  

0 ≤ μ5q ⊥ B̂q − B̂q
CAP ≤ 0,    ∀q  

 

The Nash equilibrium solution generated from the 

proposed MiCP, i.e., model (3), exists since the Nash profit 

function is concave for the maximization problem and PPS 

forms a convex set. Furthermore, we show the connection 

between desirable output and undesirable output based on 

the proposed MiCP. Therefore, we formulate Theorem 2.1 

and Corollary 2.1. 

 

Theorem 2.1: The proposed MiCP (3) generates Nash 

equilibrium solution (xir, yr, bqr) ∈ T̃ , where T̃  is 

Kuosmanen technology.  

 

Proof: ignore here due to page limit. 

 

Corollary 2.1: The Nash solution generated by MiCP(3) 

must be on the frontier representing the weak disposability 

describing the relationship between desirable output and 

undesirable outputs. 

 

Proof: ignore here due to page limit. 

 

Corollary 2.2: The Nash solution generated by MiCP(3) 

suggests the same efficient benchmark to all the firms. 

 

Proof: ignore here due to page limit. 

 

3. Nash Marginal Abatement Costs of Pollutants 
 

This section introduces the Nash marginal abatement 

cost (Nash-MAC) for jointly estimating the shadow prices 

of multiple pollutants with respect to Nash equilibrium 

benchmark. 

We estimate the shadow prices of production 

technology with desirable outputs (i.e., electricity) and 

undesirable outputs (i.e., pollutants) by the profit function, 

which is the profit maximization problem (Lee et al., 2002; 

Mekaroonreung and Johnson, 2012). Model (4) defines the 

profit maximization problem: 

π(py, pb, px) = max
y,b,x

pyy − pb
′ b − px

′ x   

s. t.  F(x, y, b) = 0        (4) 

where py , pb = (pb1 , … , pb|Q|) , and px = (px1 , … , px|I|) 

represent the price vectors of single desirable output, 

multiple undesirable outputs and multiple inputs. F(x, y, b) 
is the transformation function corresponding to a multi-

output production technology. Because we want to estimate 

the shadow prices of undesirable outputs, we impose the 

constraint F(x, y, b) = 0 so that only the frontier of the 

production possibility set is considered. Let τ  be a 

Lagrange multiplier of the constraint. We use the method of 

Lagrange multipliers to transform the above production to 

the following Lagrange function:  

max 
y,b,x

pyy − pb
′ b − px

′ x + τF(x, y, b)      (5) 

 

To solve the Lagrange function, we apply the first-

order conditions (FOCs):  



pyj + τ
∂F(x,y,b)

∂yj
= 0  

−pbq + τ
∂F(x,y,b)

∂bq
= 0         (6) 

−pxi + τ
∂F(x,y,b)

∂xi
= 0  

F(x, y, b) = 0  
We derive the shadow price of a pollutant from the 

FOCs, i.e. equations (6), and write them as: 

pbq = py (
∂F(x,y,b)

∂bq
/
∂F(x,y,b)

∂y
) = pyj (

∂y

∂xi
/
∂bq

∂xi
)       (7) 

In equation (7), 
∂y

∂xi
 and 

∂bq

∂xi
 are indeed the marginal 

productivity of electricity and marginal productivity of 

pollutants by increasing one extra unit of one specific input, 

respectively. Thus, we can use the price of electricity and 

the ratio (
∂y

∂xi
/
∂bq

∂xi
) to estimate the MAC of pollutants. 

Lee and Zhou (2015) claim that estimating the shadow 

prices of each pollutant separately may lead to an 

underestimation, and thus propose the directional shadow 

prices (DSPs) (i.e., directional MACs) of multiple 

undesirable outputs given a pre-determined direction. Let 

gx ∈ ℜ+
|I|

, gy ∈ ℜ+ , and gb ∈ ℜ+
|Q|

 be the pre-determined 

directions of inputs, single desirable output and undesirable 

outputs, respectively. Define gy + ∑ gbqq∈Q = 1 for unit 

simplex. Let vi, u, wq and u0 be the decision variables 

representing the dual multipliers of the input constraint, the 

desirable output constraint, the undesirable output 

constraint, and the convex-combination constraint of 

formulation (1). Let Xi
max = max {Xik}, Y

max = max {Yk} 
and Bq

max = max {Bqk} to eliminate the unit of factors. 

Thus, model (8) estimates the directional marginal 

productivity (DMP) (Lee, 2014) of desirable output and 

undesirable outputs by increasing one extra unit of input i∗ 
with respect to Nash solution (xi

∗, y∗, bq
∗ ) generated from 

model (3), as follows. 

Min vi∗  

s.t. ∑ vi
xi
∗

Xi
maxi∈I − u

y∗

Ymax
+ ∑ wq

bq
∗

Bq
maxq∈Q + u0 = 0 

∑ vi
Xik

Xi
maxi∈I − u

Yk

Ymax
+∑ wq

Bqk

Bq
maxq∈Q + u0 ≥ 0, ∀k  

∑ vi
Xik

Xi
maxi∈I + u0 ≥ 0, ∀k        (8) 

ugy + ∑ wqgbqq∈Q = 1  

vi, u ≥ 0, wq, u0 are free 

 

Therefore, given direction gy = 1 and ∑ gbqq∈Q = 0, 

the DMP of electricity 
∂y

∂xi
 is calculated by 

gyY
maxvi∗

Xi
max ; 

while given direction gy = 0 and ∑ gbqq∈Q = 1, the DMP 

of pollutant 
∂bq

∂xi
 is 

gbqBq
maxvi∗

Xi
max , ∀q . In particular, the 

direction vector (gy, gbq)  can be regarded as the 

“weightings” between investigated outputs. The higher the 

weight the closer the direction of the DMP to the output 

with the higher weight. Note that, it is invalid to estimate 

the DMP if the assigned direction towards the portion of 

free disposability about the inputs (Lee and Zhou, 2015). 

Based on the Nash solution on DEA frontier, the DMP 

generated by model (8) can be used for estimating the 

Nash-MAC by plugging into the equation (7). To compare 

with the Nash-MAC generated by a deterministic 

production frontier (i.e., DEA), next section introduces the 

Nash-MAC estimated by a stochastic production frontier 

(i.e., StoNED). 

 

4. Nash Equilibrium Identified on StoNED 

Frontier  
 

We have known that DEA is a mathematical 

programming technique to estimate the production function 

and does not assume any particular functional form for the 

frontier or the distribution of inefficiency. However, 

without take the noise into account, the main shortcoming 

of DEA is that it attributes all deviations from the frontier 

to inefficiency. To address the issue, one technique called 

convex nonparametric least squares (CNLS) was developed 

(Kuosmanen and Johnson, 2010) and then have led to 

integrate the noise term into the DEA framework, referring 

to stochastic semi-nonparametric envelopment of data 

(StoNED) (Kuosmanen and Kortelainen, 2012). 

StoNED is a semi-parametric regression technique that 

considers the noise and inefficiency, and does not specify 

the functional form a priori while maintaining the standard 

regularity conditions from microeconomic theory for 

production functions, namely continuity, monotonicity, and 

concavity. Consider a regression function, y = f(x) + ε, 

with shape restrictions that is estimated via CNLS, where y 

is the dependent variable, x is a vector of independent 

(explanatory) variables, and ε is a composite error equal to 

noise v plus asymmetric inefficiency u, i.e., ε = v − u; 

in particular, the zero-mean assumption is violated, i.e., 

E(ε) = E(v − u) = −E(u) < 0 . The regression function 

f(∙) is assumed to satisfy the monotonicity and concavity. 

If the inefficiency term u has a constant variance (i.e., 

inefficiency term u is homoscedastic), then the expected 

value of the inefficiency term u is a constant, denoted as μ. 

The CNLS provides a consistent estimator of the frontier f 
minus a constant (Kuosmanen and Kortelainen, 2012). 

CNLS is formulated as below.   

min
α,β,γ,ε

  ∑ εk
2

k∈K   

s.t. 

Yk = αk + ∑ βikXiki∈I + ∑ γqkBqkq∈Q + εk   ∀ k ∈ K  

αk + ∑ βikXiki∈I + ∑ γqkBqkq∈Q ≤ αh +∑ βihXiki∈I +

∑ γqhBqkq∈Q    ∀ k, h ∈ K and k ≠ h     (9) 

αk + ∑ βikXihi∈I ≥ 0   ∀ k, h ∈ K and k ≠ h     

βik, γqk ≥ 0   ∀ k ∈ K, i ∈ I, q ∈ Q  



where εk  is the composite error that represents the 

deviation of firm k from the estimated function. Decision 

variables αk, βik and γqk characterize the intercept and 

slope parameters regarding marginal products of inputs and 

undesirable outputs for each observation. The objective 

function minimizes the sum of the square with respect to 

the disturbance terms. First equality constraints represent a 

basic linear regression formulation. Second inequality 

constraints impose concavity using Afriat’s inequalities 

(Afriat, 1972). The third inequality constraints impose the 

weak disposability between desirable and undesirable 

outputs. The last constraints impose monotonicity of both 

inputs and the costs associated with additional undesirable 

outputs on the underlying unknown function. 

Given the CNLS residual ε̂k obtained from (9), the 

expected value of inefficiency, μ = E(uk) , can be 

estimated by the method of moments (Aigner et al., 1977) 

and then the CNLS frontier (i.e., the lower bounds of 

concave envelope) is shifted upwards by adding the 

expected inefficiency to estimate the StoNED frontier. The 

method of moments requires some additional parametric 

distributional assumptions, and this study assumes half-

normal inefficiency uk~N
+(0, σu

2)  and normal noise 

vk~N(0, σv
2). The second central moment of the residual 

distribution as M̂2 = ∑ (ε̂k)
2|K|

k=1 /(|K| − 1) . The third 

central moment of the residual distribution as M̂3 =

∑ (ε̂k)
3|K|

k=1 /(|K| − 1). The hat on top of the third central 

moment indicates the true estimator but unknown values of 

the central moments. In fact, based on half-normal 

inefficiency assumption, the third central moment is equal 

to M3 = (√
2

π
) (1 −

4

π
) σu

3 . Thus, given the estimated M̂3, 

we can estimate σu  as σ̂u = √
M̂3

(√
2

π
)(1−

4

π
)

3 . Finally, the 

expected value of inefficiency can be estimated as μ̂ =

σ̂u√
2

π
, and StoNED frontier is the CNLS frontier obtained 

from model (9) plus estimated expected inefficiency μ̂. 

Given the optimal coefficients α̂k , β̂ik  and γ̂qk 

obtained from model (9), now, we can define our 

maximization model of NPF with respect to StoNED 

frontier as equation (10). Similar to model (2), the profit 

function only considers the inputs and the desirable output. 

NPFr
StoNED∗ = max

yr,bqr,xir
(PY0 − κŶ)yr − ∑ Pi

Xxiri∈I   

s.t. yr ≤ α̂k +∑ β̂ikxiri∈I + ∑ γ̂qkbqrq∈Q + μ̂, ∀k ∈ K; 

α̂k + ∑ β̂ikxiri∈I + μ̂ ≥ 0, ∀ k ∈ K              (10) 

B̂q ≤ B̂q
CAP, ∀q ∈ Q;  

xir, yr, bqr ≥ 0, ∀i ∈ I, q ∈ Q  

Similar to model (2), the NPF (PY0 − κŶ)yr − Pi
Xxir 

is strictly concave on the convex PPS by StoNED frontier. 

Lemma 4.1: Model (10) provides a convex PPS restricted 

by StoNED frontier. 

 

Proof: ignore here due to page limit. 

 

To solve for a Nash equilibrium associated with 

equation (10), let φ1kr, φ2kr  and φ3qr  are Lagrange 

multipliers corresponding to each constraint (except 

nonnegativity constraint) in model (10). Based on the first-

order conditions, the MiCP is:  

0 ≤ xir ⊥ −Pi
X + ∑ φ1krβ̂ikk + ∑ φ2krβ̂ikk ≤ 0,    ∀i, r  

0 ≤ yr ⊥ P
Y0 − κŶ − κyr − ∑ φ1krk ≤ 0,    ∀r  

0 ≤ bqr ⊥ ∑ φ1krγ̂qkk − φ3q ≤ 0,    ∀q, r      (11) 

0 ≤ φ1kr ⊥ yr − α̂k −∑ β̂ikxiri∈I − ∑ γ̂qk𝑏qrq∈Q − μ̂  ≤

0,    ∀k, r  

0 ≤ φ2kr ⊥ −α̂k −∑ β̂ikxiri∈I − μ̂ ≤ 0,    ∀k, r  

0 ≤ φ3q ⊥ B̂q − B̂q
CAP ≤ 0,    ∀q  

 

The Nash equilibrium solution generated from the 

proposed MiCP, i.e., model (11), exists since the Nash 

profit function is concave for the maximization problem 

and PPS forms a convex set. 

 

Theorem 4.1: The proposed MiCP (11) generates a Nash 

equilibrium solution (xir
∗ , yr

∗, bqr
∗ ) ∈ T̃ , where T̃  is PPS 

estimated by StoNED frontier model (10).  

 

Proof: ignore here due to page limit. 

 

Corollary 4.1: Based on the MiCP (11), the larger the κ 

value, the lower desirable output and undesirable output 

generated and close to zero. 

 

Proof: ignore here due to page limit. 

 

Then, we can estimate DSP by a variant of model (8).  

 

5. Empirical Study 
 

We conduct an empirical study to estimate the Nash-

MAC of CO2, SO2 and NOx in China plant-level coal-fired 

power plants operating in 2013. We focus on the North 

region and the Northeast region in China. According to the 

Natural Resources Defense Council in China, sixty percent 

of PM2.5 (airborne particles with a diameter of less than 

2.5 microns) is directly generated from the coal burning 

and PM2.5 shows a high concentration in North region and 

the Northeast region (Yang, 2014). In fact, these two 

regions show significant abatement potential for emission 

reduction and have a greater influence on the national goal 

(Wei et al., 2012). In particular, North region includes 

province Beijing, Tianjin, Hebei, Shanxi, Shandong, and 

Inner Mongolia while Northeast region includes Liaoning, 

Jilin, and Heilongjiang. In 2013, the State Council issued 

the Air Pollution Prevention and Control Action Plan in 



September to control PM2.5 and reduce the number of 

smoggy days. The 10 point plan includes limits to pollutant 

emissions, optimization of energy use and upgrades to 

technology. Along with the plan, Hebei claimed a reduction 

of 40 million tonne coal consumption, Beijing claimed 13 

million tonne, and Shandong claimed a reduction of 20 

million tonne comparing to annual consumption in 2012. 

In this study, all the plants we investigated have 

nameplate capacity larger than one million kilowatts since 

they show large scale to affect the market price.  

 

5.1 Data Set 

Our balance plant-level data set comprises the 33 coal-

burning power plants from in 2013 (EIA, 2011). Since 

nameplate capacity is a fixed asset and does not affect the 

undesirable outputs directly, we consider coal consumption 

as single input. One desirable output is the annual amount 

of coal-fired electricity generation, and the three pollutants 

are the annual amount of CO2, SO2 and NOx. The data is 

collected from the China Electric Power Yearbook (CEPP, 

2014). The plant-level pollutant emissions are estimated by 

plant’s proportion of coal consumption to the multiplication 

of the province’s total emissions and average emission 

factor (IPCC, 2013; EEA, 2013). The total emission of the 

two regions is assigned to the Cap regarding each pollutant.  

We estimate a linear price function (i.e., inverse 

demand function) PY(Ŷ) ∶= 4.5 × 107 − 123Ŷ  (unit: 

CNY$ per 108 kWh) based on the China average on-grid 

electricity price CNY$427.01 per MWh and total electricity 

generation 15,103 (108 kWh) in these two regions in 2013. 

Note that, Ŷ = ∑ ykk + 10,975 and the constant 10,975 

represents the electricity generated by coal-fired plants 

whose nameplate capacity less than one million kilowatts. 

The price of coal is CNY$590 per tonne. US Dollar (USD) 

to Chinese Yuan (CNY) exchange rate is 6.0394. 

 

5.2 Nash MAC Estimation 

 

The section estimates the Nash-MAC of CO2, SO2 

and NOx via DEA and StoNED frontier respectively and 

shows a comparison of previous studies for MAC 

estimation in electric power sectors. Due to the three 

simultaneously emitted pollutants, we estimate the Nash-

MAC based on the direction vector (gbCO2 , gbSO2 , gbNOx) 

=(0.048, 0.508, 0.444), which is the literature-based 

direction vector suggested by Lee and Zhou (2015). In 

previous studies, the MAC range for CO2 is US$16.1 to 

$476.3 per tonne; our estimate, $257 per tonne for DEA 

and $78.5 for StoNED, is inside this range. In previous 

studies, the MAC range for SO2 is between US$165.3 and 

$8881.3 per tonne; our estimate, $7157.9 per tonne for 

DEA and $2185.8 for StoNED, is inside in this range. In 

previous studies, the MAC range for NOx is between 

US$450.8 and $40335.5 per tonne; our estimate, $8457.7 

per tonne for DEA and $2582.8 for StoNED, is inside this 

range. Table 1 summarizes the previous studies.  

Table 1 Studies for MAC in power sectors 

Study Country Year Level 
Sample 

size 

Price of 

electricity 

(US$/MWh) 

Frontier 

estimation 

Direction of 

inefficient 

unit 

projected to 

frontier* 

Atkinson & 

Dorfman (2003) 
U.S. 

1980, 

1985, 

1990, 

1995 

Firm 43 
Not 

applicable 
Translog gY>0 

Boyd et al. (1996) U.S. 1989 Plant 62 50.00 DEA gY>0, gB<0 

Coggins & 

Swinton (1996) 
U.S. 

1990

-1992 
Plant 42 36.38-65.87 Translog gY>0, gB>0 

Färe et al. (2005) U.S. 
1993, 

1997 
Boiler 209 10.39-100.42 

Quadratic 

DDF 
gY>0, gB<0 

Gupta (2006) India 
1990

-2000 
Plant 76 Not available Translog gY>0, gB>0 

Harkness (2006) U.S. 2000 Plant 518 51.58-52.96 Translog  gY>0, gB>0 

Lee et al. (2002) Korea 
1990

-1995 
Plant 43 66.67 DEA gY<0, gB<0 

Matsushita & 

Yamane (2012) 
Japan 

2000

-2009 
Firm 76 161.41 

Quadratic 

DDF 
gY>0, gB<0 

Mekaroonreung & 

Johnson (2012) 
U.S. 

2000

-2008 
Boiler 336 17.26-165.70 CNLS gY>0 

Park & Lim (2009) Korea 
2001

-2004 
Plant 80 56.07 Translog gY>0, gB>0 

Rezek & Campbell 

(2007) 
U.S. 1998 Plant 260 41.6-119 Translog gY>0 

Turner (1995) U.S. 
1985

-1987 
Plant 147 32.98-93.47 

DEA 

 
gY>0 

Zhou et al. (2015) China 
2009

-2011 
Sector 30 

Not 

applicable 
DEA gY>0, gB<0 

Lee & Zhou 

(2015) 
U.S. 

1990

-2010 
State 48 33.7-180.6 

DEA 

 

Only 

efficient unit 

This Study China 2013 Plant 33 
Endogenous 

price 71.74 

DEA 

StoNED 
Only Nash 

 

Figure 1, 2 and 3 illustrates the comparisons of the 

MACs of CO2, SO2 and NOx from 1980 to 2015. First, we 

compare the DEA methods in different studies. Figure 1 

shows that the proposed DEA method provides a relatively 

higher MAC of CO2 US$257 per tonne. Though our 

estimate is within a limited range of MAC fluctuations with 

an average of around US$288 suggested by Lee and Zhou 

(2015), but much higher than US$92.5 suggested by Zhou 

et al. (2015). The similar result is also shown in Figure 2 of 

MAC of SO2. The proposed DEA method provides a 

higher MAC of SO2 US$$7157.9 per tonne, which is more 

larger than an average MAC US$3492 by Lee and Zhou 

(2015) and US$1072 by Mekaroonreung & Johnson (2012). 

Thus, the MAC result of CO2 and SO2 implies that the 

abatement technology and policy of CO2 and SO2 in coal-

fired power industry is urgent in the North and the 

Northeast regions of China; nevertheless, a higher MAC 

suggested by the proposed DEA method implies the 

development of abatement technology on reducing CO2 

and SO2 is not affordable. That is, in the short run, the 

province should tend to purchase emission allowances of 

CO2 and SO2 from the market if the allowance price is 

much lower than MAC.  

On the other hand, Figure 3 shows the proposed DEA 

method provides a relatively reasonable MAC of NOx 

US$ 8458 per tonne within a limited range of MAC 

fluctuations with an average of around US$7929 suggested 

by Mekaroonreung & Johnson (2012) and much lower than 

US$15572 suggested by Lee and Zhou (2015). The MAC 

result implies that the plant is encouraged to invest the 

development of the NOx abatement techniques at the 



present stage. Though the allowance price is lower than 

MAC, in the long run, when carbon regulation becomes 

more and more stringent, the MAC and allowance price is 

likely to rise.  

 

 
Figure 1 Comparison of the MAC of CO2 

 

 
Figure 2 Comparison of the MAC of SO2 

 

 
Figure 3 Comparison of the MAC of NOx 

 

In addition, a comparison between the Nash-MAC 

estimated by different approaches is conducted to 

investigate whether model choice has a significant impact 

on the MAC. The choice between nonparametric DEA 

model and semi-parametric StoNED model would 

significantly affect the MAC of emission. As a whole, 

Nash-MAC estimated by StoNED frontier is much lower 

than that estimated by DEA frontier and close to the 

emission allowance. The main reason is that StoNED 

frontier considers the composite error term including noise 

and inefficiency. StoNED technique can estimate a 

production function more robust than DEA frontier, and 

thus reduce the outlier effect where DEA cannot address 

well. Thus, the present study suggests the StoNED 

approach for MAC estimation when the collected data (i.e., 

observations) shows a large (or unknown) variation.  

 

6. Conclusion 
Knowing the MAC (or shadow price) of pollutants 

provides environmental policy guidelines, such as the 

allowance price in emission trading markets and the penalty 

rates for pollutant emission. This study provides a new 

model for Nash-MAC estimation via StoNED frontier. 
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