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Abstract. In bike sharing systems, the flow of bikes is dynamic and uneven across bike stations and in 

different times of the day. An operation problem is rebalancing of bike stocks between stations. This operation 

requires a fleet of transportation vehicles and teams of staff. It incurs very significant cost and has direct 

effects on quality of services. In this paper, a model based on Poisson process is first presented to analyze the 

supply and demand characteristics of single stations. A mathematical programming formulation is then used to 

determine the optimal quantity of bike transfers.  
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1. INTRODUCTION 
 

Bike sharing systems have been increasing all over the 

world in recent years. A bike sharing system is a facility 

that provides public bikes to users who need a bike to make 

a short journey. Bike sharing systems (BSS) are usually 

located near mass transportation stations, parks, schools, 

residential areas and business centers in order to offer 

urbanites alternative modes of transport, especially for the 

short route.  

To use bike sharing systems, a user picks up a bike in 

one station and typically will return it to another station. 

The flow of bikes is dynamic across bike stations and in 

different times of the day. It is common that during some 

time periods some stations have a large demand but have 

insufficient quantity of bikes. Also, there are times that all 

parking posts at a station might be fully occupied by bikes 

and a user who wants to return a bike cannot find an empty 

post. These problems of stock-out and blocking of returns 

bring about customer complaints. Thus, one fundamental 

problem of system operation is periodical reallocation of 

bikes between stations that have too many bikes and 

stations that are in short supply of bikes. In principle, 

increasing the bike stock at all stations or critical stations 

could mitigate service quality problems, but the associated 

costs are quite high and most BSSs already rely on public 

subsidy. This is a problem of trading off between service 

quality and costs (Lu, 2013).  

The design and operation of BSSs have been studied 

in many research words. Research topics include bike 

station location (García-Palomares et al., 2012; Midgley, 

2009; Hu & Liu, 2013), and integration of mass 

transportation and bike sharing system (Midgley, 2011).) 

Normally, the location of bike stations must take into 

consideration existing points of public transportation 

stations and desired destinations of customers in order to 

provide the missing links (Midgley, 2009). 

Re-allocation of bikes is known in the literature as the 

bike rebalance (BR) problem. The costs of bike rebalance is 

quite high. BSSs are usually operated by city government 

directly or indirectly through contracts. The operating cost 

including maintenance, staff, insurance, office space and so 

on are born by the operator. Demaio (2009) reports that the 

reallocation of bikes is about 3 US dollars per bike on 

average.  

The BR problem has two versions: static or dynamic 

optimization. Static rebalance is also called periodical 

rebalancing. Rebalancing operation is mostly executed 

during non-busy periods of the day. Ho and Szeto (2014) 

studied static the BR problem. They consider a procedure 

mailto:ikmoon@snu.ac.kr
mailto:bkim@postech.ac.kr


 

 

 

of selecting a set of stations to visit, sequencing them and 

determining the number of bikes to pick up and drop off on 

each station. They utilize the iterated tabu search heuristic 

for minimizing a total penalty. Vogel et al. (2014) apply 

mixed integer linear programming to minimize the total 

expected costs of bike reallocation and unsatisfied demand. 

The result also yields relocation operation and fill level at 

each station in whole day. Di Gaspero et al. (2014) apply 

two Constraint Programming models to the BR problem: a 

routing model base on classical Vehicle Routing Problem, 

and a step model that takes a planning perspective of the 

problem. Raviv et al. (2013) constructed two Mix Integer 

Linear Programming formulations that include stochastic 

and dynamic factors of demand in the objective function. 

A few authors address the dynamic reallocation 

problem. Contardo et al. (2012) have introduced a dynamic 

public bike-sharing balancing problem (DPBSBP) from the 

daily operations of BSS during peak hours. They not only 

provide mathematical formulation but also develop a 

scalable methodology that provides lower and upper 

bounds in short computing times. Caggiani & Ottomanelli 

(2012) propose a decision support system for dynamic bike 

redistribution process to minimize vehicle repositioning 

costs while keeping high-level of user satisfaction. In this 

work, a neural network is used to forecast the bike demand 

at stations. Sayarshad et al. (2012) construct a multi-period 

mathematical formulation to maximize the profit of rented 

bikes by including allocation cost, operating cost, cost of 

holding bikes at station, capital cost per period and penalty 

cost of unmet demand. 

The literature review shows that both static 

rebalancing and dynamic rebalancing can improve the 

efficiency of BSSs. Static rebalancing has been 

implemented in most BSSs. But dynamic rebalancing needs 

to be economically justified. The objective of this paper is 

to evaluate the potential contribution of dynamic 

rebalancing.       

 

2. PROBLEM DESCRIPTION 
 

We consider a BBS based on the 400-station “Ubike” 

system in Taipei, Taiwan. Each station, indexed by 

subscript i, has a capacity 𝑘𝑖 of bike racks. The quantity of 

available bikes in each station is dynamic information that 

is accessible in real-time. Let 𝑦𝑖  be the quantity of 

available bikes. Then the number of vacant racks equals 

𝜔𝑖 − 𝑦𝑖 . The arrival and departure of bikes are assumed to 

follow Poisson processes. Dynamic balancing has a short 

time frame, such as 20 minutes, as opposed to periodical 

rebalancing. We assume the arrival and departure rates to 

be constant in the time horizon and the net arrival rate is 

represented as i. 

Stations will be classified as surplus, deficient, or 

normal stations, based on their stock level of bikes. Stations 

that have more bikes than expected are called surplus 

stations. In contrast, stations that have fewer bikes than 

expected are called deficient stations. They have 

requirements of additional bikes. Normal stations are those 

that are not surplus or deficient stations. Whether the status 

of a station is surplus, deficient or normal is not fixed or 

static. Instead, the status changes dynamically. Our 

proposed method utilizes two thresholds in bike quantity to 

monitor the status: yi and 𝑦
𝑖
. If the bike quantity of a 

station is fewer than 𝑦𝑖 , then the station is deemed a 

deficient station. A station is a surplus station if its bike 

quantity is greater than or equal to 𝑦
𝑖
. 

The problem addressed in this paper has the following 

characteristics: 

1. Customer can pick-up the bike at a station and return it 

either at the pick-up station or other stations. 

2. A customer can only rent one bicycle in each journey.  

3. If no bicycle is available at the rental station at the time 

customer arrive, the customer will leave system 

immediately. 

4. Dynamic rebalancing takes place in the next time period. 

 

Figure 1 illustrates three categories of bike stations in 

the BSS in Taipei. The objective of dynamic rebalancing is 

to determine the quantity of bikes 𝑥𝑖,𝑗 that are transferred 

from station i to station j to optimize some functions of 

service quality and utilization. The problem is characterized 

by uncertain supply and uncertain demand. A one station 

analysis will be presented in the next section. A multiple 

station model of mixed integer linear program will be 

presented in section 4. 

 

Figure 1: the deficient and surplus bike stations  
 
 

 

3. An analysis of one station 
 

In this section, it is assumed that the net arrival of 

bikes to a station follows a Poisson process. Given a 



 

 

 

demand function 𝑓𝐷(𝑦) and a supply function 𝑓𝑠(𝑥), the 

decision on hand is to determine the quantity of supply q. A 

prominent characteristic of this problem is that both 

demand and supply are uncertain. It should be noted that, 

because the supply is also uncertain, the actual delivery 

might be less than any optimized q. 

Suppose the planned supply is a variable q. Let 

𝐹𝐷(𝑦) and 𝐹𝑠(𝑥) be the CDF of 𝑓𝐷(𝑦)  and 

𝑓𝑠(𝑥), respectively. Since a supplied bike might not be 

utilized, we are concerned with the utility of each bike that 

is to be supplied. We are also concerned with service 

quality. 

1. The q bikes will be fully utilized with a total 

probability 1 − 𝐹𝐷(𝑞). This is also the probability of 

stock-out in inventory theory. 

2. Average utilization (u) = E(min(Y, q))/q  

3. The expected value of the shortage (l) is given by the 

partial expectation E(Y/Y>q). 

As q increases, both average utilization and shortage 

decrease. We shall find tradeoffs between these effects of q. 

The average utilization is = E(min(Y, q))/q. 
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The average utilization and expected loss are shown in 

smoothed curves in Figure 2 for λ=1,2,…,5. They will be 

called the u and l functions. The solution q and the 

corresponding expected loss and utilization will be denoted 

as 𝑞0, 𝑙0 and 𝑢0, and it can be seen that 
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The intersection between each pair of u and l functions is a 

characteristic of this problem. It can be determined by 

solving the equality u(q)=l(q): 
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Figure 2:  The average utilization and expected loss 

Consider an optimization problem to determine q 

under the two criteria of utilization and lost customers. The 

objective function can be expressed as Z u l   , where 

w is a weight. Geometrically, the objective value is the gap 

between the curves of 𝑢 and 𝑙 (Figure 2). Whereas unit 

weight is used in plotting Figure 2, using a non-zero weight 

merely changes the altitude of ω𝑢 and does not change 

the characteristics of the intersection between the two 

curves. Optimization over q can be treated as integer 

nonlinear programming problem. 

Since the supply is also uncertain, the above analysis 

on the equality u(q)=l(q) can be analogously extended to 

the expressions: ω ∙ 𝑢(𝑞)𝑃(𝑋 = 𝑞) and 𝑙(𝑞)𝑃(𝑋 = 𝑞).  

The optimization over q is also an integer nonlinear 

programming problem.  

 

4. Optimization over multiple stations 
 

While each station has its characteristic of supply or 

demand, a mathematical program can be used to determine 

the quantity of bikes that are to be transferred. Let 𝑞𝑗  be 

the quantity of insufficient bikes at stations j and 𝑠𝑖be the 

quantity of available supply from surplus station i. Let 

𝑑𝑗,𝑗be the distance between stations i and stations j and let 

𝑑𝑚𝑎𝑥be the maximum distance that is imposed.  

 Maximize = 
,i j

j i

X   

s.t. ,i j j

i
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 If iy y , then j jq y y  , else 0iq  j  (7) 

 If iy y , then i is y y  , else 0is  , i    (8) 

 If , maxi jd d  then , 0i jx  , ij  (9) 

The model is to find the maximum number of allocation 

bicycle Xi,j. Constraint (5) ensures that the total quantity of 

transfers does not exceed the total quantity of demand. 



 

 

 

Constraint (6) ensure that the total quantity of transfers 

does not exceed the total quantity of supply. Constraints (7), 

and (8) quantity the demand and supply, respectively. 

Constraint (9) is the maximum distance constraint.  

 

5. NUMERICAL EXAMPLE 
 

A numerical example is used to demonstrate the 

above procedure for dynamic rebalancing. The basic data is 

shown in Table 1. The arrivals and departures are generated 

following the Poisson process. Bike stock is shown in Table 

2, wherein insufficient stations are highlighted in gray 

background.  

 Using the proposed procedure, the solution of the 

allocation is listed in Table 3. The bike from surplus 

stations i was transferred to deficient stations j with its 

required amount. The total quantity of transfers is 52 bikes. 

Table 1:  Starting bike stock and expected arrival and departure rate   

1 6 15 19 20 2 4 5 9 13 14 17 18 3 7 8 10 11 12 16

14 2 18 22 20 4 18 22 33 33 47 59 13 4 18 4 21 1 14 33

in 2 2 2 1 4 2 0 0 3 3 1 3 1 0 1 1 1 1 0 3

out 1 0 1 0 0 1 2 0 3 1 1 2 0 2 5 4 3 2 4 4

in 1 3 6 4 1 2 1 0 2 2 2 2 2 2 1 1 0 1 1 2

out 0 1 2 1 1 2 2 2 1 1 0 0 0 2 3 8 3 6 3 4

in 3 4 4 3 3 1 3 3 3 2 4 3 0 0 0 2 2 1 1 1

out 0 0 1 1 0 1 1 1 4 2 2 1 3 3 6 3 6 2 3 3

in 3 2 6 2 3 4 1 2 2 1 2 2 2 1 0 0 0 0 1 0

out 0 0 0 0 3 2 0 1 0 2 2 1 0 3 6 3 6 3 4 2

in 5 2 4 6 6 5 3 1 2 3 2 2 1 3 0 2 3 1 1 3

out 2 0 1 0 0 2 3 1 2 2 2 4 3 5 7 3 3 5 5 4
1750

1700

station

1710

1720

1730

1740

 

Table 2:  Bike stock before reallocation 

1 6 15 19 20 2 4 5 9 13 14 17 18 3 7 8 10 11 12 16 shortage

5:00 PM 14 2 18 22 20 4 18 22 33 33 47 59 13 4 18 4 21 1 14 33 3

5:10 PM 15 4 19 23 24 5 16 22 33 35 47 60 14 2 14 1 19 0 10 32 6

5:20 PM 16 6 20 26 24 5 13 19 34 36 49 62 16 3 12 -4 16 -2 8 30 12

5:30 PM 19 10 18 28 27 5 8 21 33 36 51 64 13 0 6 2 12 2 6 28 5

5:40 PM 22 12 23 30 27 7 8 19 35 35 51 65 15 1 0 0 6 0 3 26 11

5:50 PM 25 14 23 36 33 10 5 19 32 36 51 63 13 1 -4 2 4 -1 -1 25 18

station

Bikecycle's stock

 befor allocate

 

Table 3:  Rreallocated bike quantity from station i to station j 

i j bikes i j bikes i j bikes i j bikes i j bikes

4 8 2 4 8 7 4 8 1 4 8 3 2 8 1

15 11 3 15 11 5 15 11 1 15 11 3 15 11 4

5 3 1 5 3 3 9 7 3 15 12 4

10 3 2 4 3 2

9 7 7

6 12 5 11 18

Time 17:10 Time 17:20 Time 17:30 Time 17:40 Time 17:50

Total Total Total Total Total  

 

      

6.  CONCLUTION  

 

In this paper, we address the dynamic stock 

rebalancing for bike sharing. The analysis of uncertain 

supply and demand of one-to-one station was determined, 

the analysis is focused on the total utilization and total 

expected loss. A mathematical programming formulation is 

used to optimize the quantity of bike transfers.  The 

numerical example shows the feasibility of dynamics 

rebalancing in the short-time period.          
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