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Abstract.  In bicycle-sharing systems, because the number of bicycles is limited, an unbalanced distribution 

of bicycles at docks can significantly decrease the system utilization. We consider trucks for bicycle 

reallocation and smart phone APPs for private exchange. For bicycle reallocation, trucks are hired to 

dynamically redistribute bicycles among unbalanced stations. For private exchange, smart phone APPs are 

used to transfer bicycles among users without docks. This allows bicycle exchange even when all docks are 

full. Three core objectives are considered in this study. The first is to maximize the total trips of bicycles, 

which is highly related to the private vehicle replacement ratio. The second is to maximize the net profit of 

system, which is highly related to the sustainability of bicycle-sharing systems. The net profit includes the 

income of bicycle trips and the costs of truck operation, dock construction, and APP system maintenance. The 

third is to optimize the fleet sizes of bicycles and trucks, and determines the best initial distribution of 

bicycles and docks. Integer programming models are built and real data from the Taipei YouBike system is 

used in the computational study. Two methods, linear relaxation and Particle Swarm Optimization are adopted 

to solve and verify our models.  
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1. INTRODUCTION 
 

In recent years, environmental issues have encouraged 

cities to expand their public transportation systems in order 

to replace private vehicles, save energy, and reduce carbon 

emissions. There are many types of mass public 

transportation systems that have stations for passengers to 

start their journey, such as trains, Mass Rapid Transit (MRT) 

and buses. To increase their efficiency, stations are 

positioned with long distances between them. A public 

bicycle-sharing system (BSS) is adopted in many cities as a 

way to move passengers to mass transit stations of public 

transportation systems. This not only extends accessibility, 

but also reduces construction costs. The YouBike system is 

an example of a BSS in Taipei city, Taiwan. In order to 

promote bicycles for short distance transitions, the 

Department of Transportation of the Taipei city government 

launched a program to construct the YouBike system in 

2009. 

Due to the limited numbers of bicycles stations and 

docks, an unbalanced distribution of bicycles is an 

important issue that decreases the system utilization. To 

address this issue, we build integer programs to model 

trucks for bicycle reallocation and APPs for private 

exchange. The decision is to find the best initial allotment 

of bicycles and docks. We consider two different but 

important objectives. The first objective is to maximize the 

net profit of a BSS. The net profit includes the income of 

bicycle trips and the costs of truck operation, dock 

construction, and APP system maintenance. The other 

objective is to optimize the fleet sizes of bicycles and 

trucks, and to decide the best initial distribution of bicycles 

and docks. Integer programming models are constructed 

and solved by Particle Swarm Optimization (PSO). Also, 

the linear relaxation of the three integer programming 

models is solved by CPLEX. Numerical studies are 

implemented with the real data of the YouBike system in 

2013. 

This paper is organized as follows. We review some 

import BSS literature in Section 2. In Section 3, we define 
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our problem and construct the integer programming models. 

In Section 4, computational studies are presented that study 

the impact of truck reallocation and private exchange. 

Conclusions and directions of future research are discussed 

in Section 5.  

 

2. LITERATURE REVIEW 
 

DeMaio (2004) reviews the history of bicycle-sharing, 

from the first generation programs to the most recent third 

generation programs, including the examination of 

provision models with benefits and operating costs. 

DeMaio (2004) also considers the future with a discussion 

about what a fourth generation bicycle-sharing program 

might look like. Raviv and Kolka (2013) propose an 

inventory model to study the bicycle management of 

stations in bicycle-sharing system. Their study is based on a 

single station, which helps decision making on docking 

capacity and bicycle redistribution. Nair and Miller-Hooks 

(2011) study the truck redistribution problem and construct 

a stochastic mixed-integer programming model with joint 

chance constraints. Schuijbroek et al. (2013) further 

develop a model to optimize routes for bicycle 

redistribution. Contardo et al. (2012) investigate the 

dynamic scenario where rebalancing is continuing while 

the bicycle-sharing system is in use. For randomly created 

instances, this approach is able to find feasible solutions to 

problems with up to 100 stations and 60 time periods. 

However, significant gaps between lower and upper bounds 

still remain. Chemla et al. (2012) consider only one 

redistribution truck to pickup and delivery bicycles among 

stations. They describe a branch-and-cut approach utilizing 

an embedded tabu search procedure for locally improving 

incumbent solutions.  

Shu et al. (2013) propose a deterministic linear 

programming model to mimic the bicycle-sharing system 

and compare the result of simulation on real data. Their 

notation and model are as follows. 

 

𝑆 : Set of stations, where 𝑆 = {1,2, … , 𝑠} 

𝑁 : Set of time periods, where 𝑁 = {1,2, … , 𝑛} 

𝑟𝑖𝑗(𝑡) : Travel demand from station 𝑖 to station 𝑗, 
for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁 

𝑦𝑖(0) : Initial bicycle allotment at station 𝑖, for 

𝑖 ∈ 𝑆 

𝑦𝑖(𝑡) : Number of bicycles at station 𝑖  at the 

beginning of time period 𝑡, for 𝑖 ∈ 𝑆, 𝑡 ∈
𝑁 

𝑦𝑖𝑖(𝑡) : Number of bicycles remaining at station 𝑖 
during time period 𝑡, for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁 

𝑥𝑖𝑗(𝑡) : Number of bicycles traveling from station 

𝑖  to station 𝑗  during time period 𝑡,  

for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁. 

 

Max ∑ ∑ ∑ 𝑥𝑖𝑗(𝑡)

𝑗∈𝑆:𝑗≠𝑖𝑖∈𝑆𝑡∈𝑁

 

(O) s.t.     

 
𝑥𝑖𝑗(𝑡)

𝑥𝑖𝑙(𝑡)
 = 

𝑟𝑖𝑗(𝑡)

𝑟𝑖𝑙(𝑡)
, (1) 

   for 𝑖, 𝑗, 𝑙 ∈ 𝑆, 𝑡 ∈ 𝑁  

 𝑥𝑖𝑗(𝑡) ≤ 𝑟𝑖𝑗(𝑡), (2) 

   for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁  

 𝑦𝑖(1) = 𝑦𝑖(0), (3) 

   for 𝑖 ∈ 𝑆  

 𝑦𝑖(𝑡) = 𝑦𝑖𝑖(𝑡) + ∑ 𝑥𝑖𝑗(𝑡)

𝑗∈𝑆:𝑗≠𝑖

, (4) 

   for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁  

 𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡) − ∑ 𝑥𝑖𝑗(𝑡)

𝑗∈𝑆:𝑗≠𝑖

 (5) 

            + ∑ 𝑥𝑗𝑖(𝑡)

𝑗∈𝑆:𝑗≠𝑖

,  

   for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁  

𝑥𝑖𝑗(𝑡), 𝑦𝑖(𝑡), 𝑦𝑖𝑖(𝑡) ≥ 0,  

  for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁 ∪ {0}. 

 

Constraint (1) is proportionality constraint, which 

requires that the proportions of traveling-out bicycles and 

travel demand should be equal. Constraint (2) ensures 

traveling bicycles must less than or equal to the travel 

demand. Constraint (3) provides the initial allotment of 

bicycles. Constraint (4) describes that bicycles either 

remain at the same station or travel to another station in 

each time period. Constraint (5) are flow balance equations, 

which ensures that the number of available bicycles at 

station 𝑖 in the beginning of time period 𝑡 + 1 equals the 

number of unused bicycles plus the number of arriving 

bicycles minus the number of departing bicycles, at station 

𝑖  during time period 𝑡 . The goal of Model O is to 

maximize total bicycle trips. 

 

3. PROBLEM FORMULATIONS 
 

In this section, we first define our problem and 

provide the assumptions used in this study. Based on Model 

O, there are three integer programming models proposed 

for our problem. The first and second is for bicycles 



 

reallocation without and with flow balance of trucks, 

respectively. The third is for APPs of private bicycles 

exchange. 
 
3.1 Problem definition and assumptions 
 

Consider a BSS. At the beginning of each time period, 

passengers arrive at some station to use the bicycles to 

travel to the other stations. A decision maker needs to 

decide the initial allotment of bicycles at each station. The 

objective is to maximize the income of total bicycle trips. 

The following assumptions are used in this paper: 

(i) Bicycles travel begins at the beginning and ends at 

the conclusion of each time period. Travel that 

requires two or more time periods is not considered. 

(ii) Bicycles do not leave and return to the same station. 

(iii) Bicycles and reallocation trucks are two different 

types of vehicles. 

(iv) Travel demand from one station to another station is 

given. 

(v) Private bicycles exchange is allowed only if all 

docks are full. Otherwise, passengers must return 

and rent bicycles at docks. 

 

3.2 Bicycles reallocation with trucks 
 

In this subsection, we consider trucks to reallocate bic

ycles in a BSS. The trucks can move idle or surplus bicycle

s from one station to another station to balance the distribut

ion of bicycles. As a result, more travel demand can be met.

 Our objective is to maximize the net profit of system. The 

net profit includes income of bicycle trips and operation co

st of truck trips. The following notation used. 

 

𝑏 : Index of vehicle types, where 𝑏 = 1 for 

bicycles and 𝑏 = 2 for trucks 

𝑞𝑏 : Number of total 𝑏 vehicles in the system, 

for 𝑏 ∈ {1,2} 

𝑐 : Operation cost of trucks per trip 

ℎ : Capacity of a truck 

𝑦𝑖𝑏
𝐵 (0) : Initial allotment of 𝑏 vehicles at station 

𝑖, for 𝑖 ∈ 𝑆, 𝑏 ∈ {1,2} 

𝑦𝑖𝑏
𝐵 (𝑡) : Number of 𝑏 vehicles at station 𝑖 at the 

beginning of time period 𝑡, for 𝑖 ∈ 𝑆, 𝑡 ∈

𝑁, 𝑏 ∈ {1,2} 

𝑦𝑖𝑏
𝑅 (𝑡) : Number of 𝑏  vehicles remaining at 

station 𝑖 at the middle of time period 𝑡, 

for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁, 𝑏 ∈ {1,2} 

𝑥𝑖𝑗𝑏(𝑡) : Number of 𝑏  vehicles traveling from 

station 𝑖 to station 𝑗 during time period 

𝑡, for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁, 𝑏 ∈ {1,2} 

𝑢𝑖𝑗(𝑡) : Number of bicycles carried by trucks from 

station 𝑖 to station 𝑗 during time period 

𝑡, for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁. 

 

We generalize Model O by Shu et al. (2013) as follows. 

 

Max ∑ ∑ ∑ 𝑥𝑖𝑗1(𝑡)

𝑗∈𝑆:𝑗≠𝑖𝑖∈𝑆𝑡∈𝑁

− 𝑐 ∑ ∑ ∑ 𝑥𝑖𝑗2(𝑡)

𝑗∈𝑆:𝑗≠𝑖𝑖∈𝑆𝑡∈𝑁

 

(T) s.t.    
 

 

 
𝑥𝑖𝑗1(𝑡)

𝑥𝑖𝑙1(𝑡)
 = 

𝑟𝑖𝑗(𝑡)

𝑟𝑖𝑙(𝑡)
, (1) 

   for 𝑖, 𝑗, 𝑙 ∈ 𝑆, 𝑡 ∈ 𝑁  

 𝑥𝑖𝑗1(𝑡) ≤ 𝑟𝑖𝑗(𝑡), (2) 

   for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁  

 𝑦𝑖1
𝐵 (1) = 𝑦𝑖1

𝐵 (0), (3) 

   for 𝑖 ∈ 𝑆  

 ∑ 𝑦𝑖1
𝐵 (0)

𝑖∈𝑆

 ≤ 𝑞1, (6) 

 𝑦𝑖1
𝑅 (𝑡) = 𝑦𝑖1

𝐵 (𝑡) − ∑ 𝑥𝑖𝑗1(𝑡)

𝑗∈𝑆:𝑗≠𝑖

 (7) 

   − ∑ 𝑢𝑖𝑗(𝑡)

𝑗∈𝑆:𝑗≠𝑖

,  

   for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁  

 𝑦𝑖1
𝐵 (𝑡 + 1) = 𝑦𝑖1

𝑅 (𝑡) + ∑ 𝑥𝑗𝑖1(𝑡)

𝑗∈𝑆:𝑗≠𝑖

 (8) 

   + ∑ 𝑢𝑗𝑖(𝑡)

𝑗∈𝑆:𝑗≠𝑖

,  

   for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁  



 

 ∑ 𝑦𝑖2
𝐵 (0)

𝑖∈𝑆

 ≤ 𝑞2, (6’) 

 𝑦𝑖2
𝐵 (1) = 𝑦𝑖2

𝐵 (0),  

   for 𝑖 ∈ 𝑆  

 𝑦𝑖2
𝑅 (𝑡) = 𝑦𝑖2

𝐵 (𝑡) − ∑ 𝑥𝑖𝑗2(𝑡)

𝑗∈𝑆:𝑗≠𝑖

, (7’) 

   for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁  

 𝑦𝑖2
𝐵 (𝑡 + 1) = 𝑦𝑖2

𝑅 (𝑡) + ∑ 𝑥𝑗𝑖2(𝑡)

𝑗∈𝑆:𝑗≠𝑖

, (8’) 

   for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁  

 𝑢𝑖𝑗(𝑡) ≤ ℎ ∙ 𝑥𝑖𝑗2(𝑡), (9) 

   for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁  

𝑥𝑖𝑗𝑏(𝑡), 𝑦𝑖𝑏
𝐵 (𝑡), 𝑦𝑖𝑏

𝑅 (𝑡) ≥ 0,  

  
for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁 ∪ {0}, 

𝑏 ∈ {1,2} 

𝑢𝑖𝑗(𝑡) ≥ 0,  

  for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁. 

 

Constraints (1)-(3) appear in Model O. Constraint (6) 

allocates all 𝑞1 bicycles to stations at the beginning of 

time 0. Constraint (7) keeps the bicycle balance at the 

middle of each time period. That is, the number of bicycles 

at the middle of time period 𝑡 is equal to the beginning 

bicycles minus the leaving bicycles (by passengers and 

trucks) at the beginning of time period 𝑡. Constraint (8) 

shows the bicycle flow balance cross time periods. That is, 

the number of bicycles at the beginning of time period 𝑡 +
1 is equal to the number of bicycles at the middle of time 

period 𝑡  plus the arriving bicycles (by passengers and 

trucks) at the end of time period 𝑡 . See Figure 1 . 

Similarly, Constraints (6’), (7), and (8’) keep the flow 

balance of trucks. Constraint (9) ensures that trucks cannot 

overload. 

Note that, we can remove Constraints (6’)-(8’) and the 

flow balance of trucks is ignored. The simplified model 

(without Constraints (6’)-(8’)) is called Model T-simple. 

 

3.3 Private exchange 
 

We also consider the smart phone APPs, which can 

transfer the registration of bicycles face-to-face without 

docks. When all docks are full at some station, passengers 

of returning bicycles can privately exchange bicycles by 

APPs with other passengers of renting bicycles directly. 

When no passenger rents a bicycle, we assume that there 

exists a staff at each station to accept returning bicycles by 

APPs. As a result, private exchange by APPs not only saves 

construction cost of docks but also improves passenger 

satisfaction. Based on Model O, we propose Model PE to 

consider the private exchange. Our objective is to 

maximize the net profit of system. The net profit includes 

income of bicycle trips and cost of docks and private 

exchange. The following additional notation is needed. 

 

𝑑 : Number of docks 

𝑐𝑑 : Construction cost per dock 

𝑐𝑒 : Private exchange cost per bicycle 

𝑦𝑖
𝐵(0) : Initial bicycle allotment at station 𝑖, for 𝑖 ∈ 𝑆 

𝑦𝑖
𝐵(𝑡) : Number of bicycles at station 𝑖  at the 

beginning of time period 𝑡, for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁 

𝑦𝑖
𝑅(𝑡) : Number of bicycles remaining at station i at 

the middle of time period t, for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁 

𝑑𝑖 : Initial dock allotment at station 𝑖, for 𝑖 ∈ 𝑆 

𝑒𝑖(𝑡) : Number of private exchange at station 𝑖 
during time period 𝑡, for i ∈ 𝑆, 𝑡 ∈ 𝑁. 

 

Model PE is as follows:

 

 

 

Figure 1: Time period of Model T. 

 



 

Max ∑ ∑ ∑ 𝑥𝑖𝑗(𝑡)

𝑗∈𝑆:𝑗≠𝑖𝑖∈𝑆𝑡∈𝑁

 

 
 

−𝑐𝑑 ∑ 𝑑𝑖

𝑖∈𝑆

− 𝑐𝑒 ∑ ∑ 𝑒𝑖(𝑡)

𝑖∈𝑆𝑡∈𝑁

 

(PE) s.t.     

 
𝑥𝑖𝑗(𝑡)

𝑥𝑖𝑙(𝑡)
 = 

𝑟𝑖𝑗(𝑡)

𝑟𝑖𝑙(𝑡)
, (1) 

   for 𝑖, 𝑗, 𝑙 ∈ 𝑆, 𝑡 ∈ 𝑁  

 𝑥𝑖𝑗(𝑡) ≤ 𝑟𝑖𝑗(𝑡), (2) 

   for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁  

 𝑦𝑖
𝐵(1) = 𝑦𝑖

𝐵(0), (3) 

   for 𝑖 ∈ 𝑆  

 ∑ 𝑦𝑖1
𝐵 (0)

𝑖∈𝑆

 ≤ 𝑞1, (6) 

 𝑦𝑖
𝑅(𝑡) = 𝑦𝑖

𝐵(𝑡) − ∑ 𝑥𝑖𝑗(𝑡)

𝑗∈𝑆:𝑗≠𝑖

, (7) 

   for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁  

 𝑦𝑖
𝐵(𝑡 + 1) = 𝑦𝑖

𝑅(𝑡) + ∑ 𝑥𝑗𝑖(𝑡)

𝑗∈𝑆:𝑗≠𝑖

, (8) 

   for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁\{𝑛}  

 ∑ 𝑑𝑖

𝑖∈𝑆

 ≤ 𝑑, (10) 

 𝑒𝑖(𝑡) ≥ 𝑦𝑖
𝐵(𝑡 + 1) − 𝑑𝑖 , (11) 

   for 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁\{𝑛}  

𝑥𝑖𝑗(𝑡), 𝑦𝑖
𝐵(𝑡), 𝑦𝑖

𝑅(𝑡) ≥ 0,  

  for 𝑖, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑁 ∪ {0}. 

 

Constraints (1)-(3) appear in Model O. Constraints (6)

-(8) appear in Model T. Constraint (10) decides initial dock 

allotment.  Constraint (11) computes the number of 

private exchange bicycles. 

 

4. COMPUTATIONAL STUDY  
 

In this section, we first introduce the data from the 

Taipei YouBike system. Then, we estimate the cost of truck 

operation and APPs. Next, we consider some parameters 

that have an impact on the performance of our models. 

Finally, experimental results are provided. 

 

4.1 Real data from the Taipei YouBike system 
 

The data from the Taipei YouBike system from 

January, of 2013 to April of 2013 is adapted for our 

numerical studies. We focus on passengers for short 

distance communication. Therefore, bicycle trips longer 

than 30 minutes (about 16% of total bicycle trips) are 

ignored. Also, traveling from and returning to the same 

station (less than 1%) is not considered. We study the daily 

operation from 5:00 a.m. to 1:00 a.m. of next day (total 20 

hours) as 40 time periods. The statistical data from January 

of 2013 to April of 2013 is shown as Table 1. 

 

Table 1: Statistical data of the Taipei YouBike system  

from Jan-13 to Apr-13. 

 

Month Jan-13 Feb-13 Mar-13 Apr-13 

# of stations 58 58 58 58 

Total travel demand 287680 340400 445358 329280 

 

We sum up all the travel demand between each pair of 

stations in the whole month for each time interval. The 

estimated income for the BSS is $10 per bicycle trip. For 

the total number of bicycles, three scenarios are considered. 

First, the total number of bicycles in 2013 is around 2000. 

Second, since that the average travel time is about 13 

minutes and each time period is 30 minutes. We calculate 

turnover rate and estimate the total number of bicycles can 

be used in a 30-minute period. Third, the total number of 

bicycles in 2016 is around 7500. The detail data is shown in 

Table 2. 

 

Table 2: Average travel time and total numbers

 of bicycles in our models from Jan-13 to Apr-13. 

 

Month Jan-13 Feb-13 Mar-13 Apr-13 

Average usage time (mins) 12.58 13.43 12.01 12.55 

Bicycle turnover rate in 30 minutes 2.38 2.23 2.49 2.39 

Total number of bicycles 1844 2004 2132 2196 

Estimated total number of bicycles 4394 4475 5324 5249 

 

4.2 Cost analysis of truck operation and APPs 
 

In this subsection, we estimate the cost of reallocation 

trucks, docks, and private exchange for our models.  The 

depreciation period is 7 years according to the Department 

of Transportation of the Taipei city government.  

According to Table 3, each truck needs two dispatchers and 

the total cost is about NT$140 per truck trip in Model T.  



 

Each truck trip can move up to 20 bicycles at a time. For 

Model PE, the private exchange cost is about NT$0.5 per 

bicycle per private exchange.  Dock cost is about NT$20 

per day. 

 

4.3 Design of experiments 
 

There are several factors studied: the total number of 

bicycles, the truck cost per trip, the private exchange cost, 

and the dock cost. For three integer programming models, 

we use CPLEX to solve linear relaxation problems and 

PSO to solve the integer programs. For PSO, we generate 

30 particles, implement 5000 iterations, and set the 

stopping criteria of no improvement in 200 iterations. 

In Case 0, we consider different total number of 

bicycles in Model O from January 2013 to April 2013. We 

set Case 0 as a benchmark to compare with other models. 

The, we consider different truck costs for Models T-Simple 

and T in Cases 1 and 2, respectively. In Case 3 and 4, we 

study the impact of different private exchange costs and 

dock costs in Model PE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Cost analysis of the YouBike system. 

 

Model Item Cost Cost per unit Remarks 

T 

Truck NT$700,000 / truck NT$7 / time interval Truck capacity is 20 bicycles 

Dispatcher NT$30,000 / month NT$64 / time interval Two dispatchers are needed in a truck 

About NT$140 / truck trip 

PE 
APP NT$240,000 / team NT$0.5 / private exchange 

A 6-member team to develops APPs in around 

20 days 

Dock NT$59,322 / dock NT$20 / day  

 

 

Table 4: Design of experiments for Model T-Simple and Model T. 

 

Case Model Month 
Number of 

total bicycles 
Cost per truck trip (NT$) 

Number of 

scenarios 

0 O Jan-13~Apr-13 2000, Estimated, 7500 Not considered 12 

1 T-Simple Jan-13~Apr-13 2000, Estimated, 7500 80,100,…,200,500,1000,…,3000 156 

2 T Jan-13~Apr-13 2000, Estimated, 7500 80,100,…,200,500,1000,…,3000 156 

 

 

Table 5: Design of experiments for Model PE. 

 

Case Model Month 
Number of 

total bicycles 

Private exchange cost 

per bicycle (NT$) 

Cost per dock 

(NT$) 

Number of 

scenarios 

3 PE Jan-13~Apr-13 2000, Estimated, 7500 
0, 0.1,…, 1, 

5,10,…,30 
20 204 

4 PE Jan-13~Apr-13 2000, Estimated, 7500 0.5 10,15,…,30 60 



 

 
4.4 Experimental results 
 

We first show the results of Case 0 for comparison.  

 

Figure 3: Experimental results of Case 0. 

 

Figure 3 shows the total bicycle trips, fulfill rates, the 

relative errors, and computational times between the 

solutions of CPLEX and PSO in Case 0. In Figure 3, we 

observe that the number of bicycles trips increases with the 

total number of bicycles. Among the 4 months, March 2013 

has unexpectedly high demand and the lowest fulfill rate. 

This means March 2013 is more critical than other 3 

months. Thus, we use the results of March 2013 for brief 

demonstration.   

Recall that the CPLEX is adopted for the linear 

relaxation and PSO is used for the integer program. As a 

result, the objective value of PSO is about 20~30% lower 

than that of CPLEX for all scenarios.  

Next ,  we show the results of Case 1 (Model T-

Simple) and Case 2 (Model T) in Figures 4 and 5, respecti

vely.  

 

 

Figure 5: Experimental results of Case 2. 

 

In Figures 4 and 5, if truck cost per trip decreases, 

then the number of truck trips increases. Hence, surplus 

bicycles can move to stations with high demand. As a result, 

more travel demand can be met. Both number of bicycle 

trips and fulfill rate increase. 

Finally, we show the results of PE in Case 3 (Model 

PE with different private exchange costs) and Case 4 

(Model PE with different dock costs) in Figures 6 and 7, 

respectively.  There are two important observations. 

 

Observation 1. The number of docks increases with the 

private exchange cost. 

 

Observation 2. The number of private exchange bicycles 

increases as the dock cost increases. 

 

In Figure 6, if private exchange cost increases, then 

more docks are suggested for long term to avoid private 

exchange. Moreover, the optimal numbers of private 

exchange bicycles and docks are sensitive when the private 

exchange cost is between NT$0.5 and NT$0.6 per bicycle. 

In Figure 7, if dock cost increases, then fewer docks 

are provided. Instead, more private exchange is 

encouraged to maintain the fulfill rate and net profit. 

Moreover, the numbers of private exchange bicycles and 

docks are sensitive when the dock cost is between NT$15 

and NT$20.  

Figure 4: Experimental results of Case 1. 

 



 

 

Figure 6: Experimental results of Case 3. 

 

 

Figure 7: Experimental results of Case 4. 

 

 

 

5. CONCLUSIONS AND FUTURE RESEARCH  
 

In this paper, we study a BSS, and consider trucks for 

bicycle reallocation and APPs for private exchange. Our 

decision is to find the best initial allotment of bicycles and 

docks. The objective is to maximize the net profit of the 

BSS. The net profit includes the income of bicycle trips and 

the costs of truck operation, dock construction, and APP 

system maintenance. Based on Shu et al. (2013), we 

propose three integer programming models. We adopt PSO 

to solve the integer programs and CPLEX to solve the 

linear relaxations.  

The real data of Taipei YouBike system in 2013 is 

adopted for our computational study. We also estimate the 

total number of bicycles, the costs of trucks and APPs. Our 

experiments are designed to the study the impact of the 

total number of bicycles, truck cost, private exchange cost, 

and dock cost. Finally, experimental results show that the 

relative errors are less than 30% between CPLEX and PSO. 

Six important observations show the relationships among 

different parameters. 

For future research, other meta-heuristic methods 

could be tried to reduce the gap between the integer 

programming and the linear relaxation. Also, our model co

uld be expanded to other situations, such as dynamic 

pricing on the bicycle renting price. 
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