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Abstract. Recently, Brain-computer interfaces (BCIs) are attractive systems that reflect the intentions of the 

patient. BCIs is used to help patients with amyotrophic lateral sclerosis (ALS) that have difficulty communicating 

due to paralysis. With long-term use of a BCI, it is conceivable that a sensor may be affected by a physiological 

phenomenon, such as sweating. In addition, the state of the user’s brain activity varies with his/her concentration 

levels. These factors reduce the classification accuracy of brain activity and can lead to unintended behavior from 

the user. We aimed to study the causal relationship between the operating time and classification accuracy in order 

to develop a learning model in which classification accuracy is maintained in the long term using BCI. Brain 

activity was recorded when performing the left or the right hand movement. As a result, brain activity during the 

task varies immediately after the onset of BCI use compared to later time points. We can thus conclude that the 

model created using EEG data obtained immediately after BCI use cannot discriminate the new data. Based on 

the above results, we need to update the learning model for long-term BCIs. 
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1. INTRODUCTION 
 

Recently, there has been an increase in the number of 

patients with amyotrophic lateral sclerosis (ALS) that have 

difficulty communicating due to paralysis. The number of ALS 

patients has increased from 8,285 to 9,950 in six years. In 

addition, there are significant numbers of people who are 

unable to freely move their bodies due to external factors, such 

as traffic accidents, brain infarctions, muscular dystrophy, etc. 

Many such patients are unable to communicate with their 

caregivers or to take independent action. These patients are 

more likely to experience anxiety and stress. Brain-computer 

interfaces (BCIs) are attractive systems that allow patients who 

are unable to move to communicate. BCIs are systems that can 

be controlled by analyzing brain activity using techniques such 

as electroencephalography (EEG), near-infrared spectroscopy 

(NIRS), functional magnetic resonance imaging (fMRI), to 

determine the intentions of the patient. BCIs are machines with 

operating systems that allow communication without a need 

for body movements (Niels Birbaumer, 2006). BCI is used to 

rehabilitate patients with neurological diseases and to allow 

them to communicate with their caregivers. The goal of the 

above study was to improve the classification accuracy of brain 

activity measures during the operating time, which was short 

in the study. With long-term use of a BCI, it is conceivable that 

a sensor may be affected by a physiological phenomenon, such 

as sweating. In addition, the state of the user’s brain activity 

varies with his/her concentration levels. These factors reduce 

the classification accuracy of brain activity and can lead to 

unintended behavior from the user. We thus focus on the 

operating time of the BCI with the aim of increasing the user’s 

independence. We aimed to study the causal relationship 

between the operating time and classification accuracy in order 

to develop a learning model in which classification accuracy is 

maintained in the long term using BCI. 

 

 



 

 

2. Methods 
 

Here we describe the imaging procedure used to measure 

brain activity and relevant hardware. 

 

2.1 Motor imagery 

 

Motor imagery is the recall of a movement without 

moving one’s body. It has been used for the rehabilitation of 

patients and the training of athletes and has similar effects on 

learning to actual exercise. In this study, we instructed the 

subjects to recall the movement of tapping one’s hand on the 

armrest of the chair in the environment shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Image tapping 

 

2.2 Measurement hardware 
 

We measured EEGs using a Thought Technology Co., 

Ltd., ProComp Infiniti （Figure 2.2）. ProComp Infiniti is a 

machine that records EEGs when its electrodes are placed on 

the scalp. EEGs measured on the scalp record the sum of the 

post-synaptic activity nerves of the brain when the brain is 

active. Therefore, if many nerves are active, there will be more 

post-synaptic potential and we will observe larger EEG values. 

The ProComp Infiniti sampled EEG activity at a frequency of 

256 Hz and used 4 electrodes for recording. In this study, EEG 

was recorded using 4 electrodes (Fz, Cz, C3, C4) chosen based 

on a previous study (Mohammad H Alomari, 2013; Chih-I 

Hung, 2005). We used the international 10-20 system with the 

left earlobe as a reference and the right earlobe as the ground. 

The layout of the electrodes is shown in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Procomp Infiniti 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Electrode map 

 

 

3. Experiment 
 

This experimental study demonstrates how brain activity 

changes and classification accuracy is affected during the BCI 

operating time. Below, we describe the environment, the 

mental task, and our analysis. 

 
3.1 Experiment environment 
 

Five male subjects (A-E, four right handed and one left 

handed) 22-24 years of age participated in the experiment. 

Subjects performed the experiment sitting in a state that 

allowed the electrodes to be placed on their heads and on both 

earlobes. The experiment was performed in a dark room in 

which all electronic equipment other than the instrument 

(monitor, PC, BCI) was turned off. 

 
3.2 Experimental task 
 

The experimental task was designed based on previous 

studies (Pradeep Shenoy, 2006; Mohammad H Alomari, 2014). 

The experimental procedure is shown in Figure 3.1. The task 

consisted of the display of the rest symbol for 5 s, the display 

of the blank symbol for 2 s, and the display of the task symbol 

for 8 s (Figure 3.2). The above procedure comprises 1 trial. 

Each subject participated in 60 trials with breaks every 4th trial. 

There were two types of task screens. One consisted of a green 

square on the left side, while the other consisted of an orange 

square on the right side. The square position determines 

whether the left or the right hand should perform the tapping 

movement in the subject’s imagination. During the experiment, 

brain activity was recorded at all times, except for the rest 

times. 



 

 

 

Figure 3.1: Trial flowchart 

 

Figure 3.2: Task symbols 

 

3.3 Analysis method 

 

We performed a t-test to determine amplitudes that led to 

significant differences in the recorded brain activity. EEG data 

recorded at electrodes C3 and C4 were analyzed in the 

experiment. The summary of the analysis is shown in Figure 

3.3. We applied fast Fourier transform analysis to brain activity 

data obtained in 15-s trials with window lengths of 1 second 

(256 Hz) and shift lengths of 0.5 s (128 Hz). We obtained data 

using an arithmetic mean between 8 Hz and 13 Hz. We 

performed a t-test on the data from the test group obtained 

during motor imagery trials 1-20 and calculated the p-value as 

shown in Appendix A. We were interested in the 10 lowest p-

values obtained using these data. The classification of the data 

into the two classes was performed using an SVM grid search. 

The grid search was performed on 2 ̂  2 to 2 ̂  3 grids to analyze 

the cost parameter, the Radial Basis Function, and the kernel 

parameter. These parameters were selected to maximize the 

classification accuracy of group 1. EEG data were divided into 

three groups, with data from 20 trials in each group (group 1 

consists of trials 1-20, group 2 consists of trials 21-40, and 

group 3 consists of trials 41-60). In addition, for group 1, we 

excluded data using the leave-one-out method and created a 

model outside of the data and performed discrimination 

analysis. 

 

Figure 3.3: Analysis flowchart 

 

 

4. Result 
 

In this section, we describe significant differences 

observed in each data group and display the classification 

results using the learning model and data from group 1. 

 

4.1 Significant differences in the data from each 
group 
 

Appendix A shows the results of t-tests applied to EEG 

data from each data group. The figures consist of graphs of the 

variations in the significant differences found for each subject. 

Subject A is missing 256-Hz (1-s) data because some data was 

not recorded normally. However, the model obtained using 

subject A was made similarly to those for the other subjects. In 

group 1, the significant differences tend to appear during the 

task period (7-15 s). In contrast, in groups 2 and 3, the 

significant differences tends to appear during the blank period 

(5-7 s). As shown in this figure, the point at which the 

significant difference appeared in group 1 is not always the 

same as when the significant difference was observed in group 

2 or group 3. In the next section, we will describe the effects 

of this tendency on classification accuracy. 

 

4.2 Classification results 
 

  Figure 4.1 shows changes in classification accuracy for 



 

 

all subjects in each of the data groups. The vertical axis 

indicates classification accuracy by SVM, while the horizontal 

axis indicates the data group number. We present data for 

subjects A-E. Group 1 accuracy is higher than 80% for all 

subjects, whereas group 2 accuracy decreases to near 50% for 

4 of the subjects. Group 3 accuracy was even further decreased 

for 3 of the subjects, which indicated that it would be difficult 

to maintain classification accuracy using this model. 

 

Figure 4.1: Classification accuracy 

 

 

5. Discussion 
 

The above results indicate that classification accuracy 

decreases in groups 2 and 3. We concluded that the model that 

used group 1 data was unable to correctly discriminate the new 

data. The cause of the decrease in the classification accuracy 

was thought to involve changes in brain activity levels and the 

fact that the subjects may have lost their concentration during 

the rest periods in the middle of the experiment. In addition, 

the relaxation of the subjects may also have been an important 

factor in the loss of classification accuracy. The significant 

differences were observed to change as the number of tasks 

increased. This enabled us to observe individual differences in 

the data. For example, the classification accuracy for subject 

ACE was further reduced in group 3, while the classification 

accuracy for subject BD was slightly increased. It is thus 

conceivable that significant differences may be observed again 

in later trials, as they did for subject BD. In addition, it is 

conceivable that we had over-fitting of the data with decreases 

in the classification factor, as EEG data was lacking. There is 

a possibility that the generalization capability of the model was 

reduced due to the use of an inappropriate number of data 

points in the 10-feature model, which could not correctly 

discriminate the new data. Furthermore, if the model continues 

to learn from the data in groups 2 and 3, the classification 

accuracy of the group 1 data may be reduced. Based on these 

factors, brain activity during the task is different immediately 

after the onset of BCI use compared to later time points. We 

can thus conclude that the model created using EEG data 

obtained immediately after BCI use cannot discriminate the 

new data. Therefore, there is a need to update the learning 

model when performing long-term BCI studies. In future 

research, we will investigate the causal relationship between 

operating time and classification accuracy in more detail with 

the aim of building a BCI that leads to the creation of a model 

that is able to select suitable data for the classification. 

 

 

6. Conclusion 
 

We aimed to study the causal dependence between the 

operating time and classification accuracy in BCI in order to 

develop a learning model that maintains its classification 

accuracy in the long–term. Our ultimate goal is to enable the 

user to have extended independence. We designed a task of 

motor imagery for use in the classification of brain activity. We 

instructed 5 subjects to recall the motor imagery of the left- or 

right-hand tapping movement when presented with the square. 

We used only EEG data from electrodes C3 and C4 and studied 

variations in brain activity. We then performed a t-test to test 

the group consisting of motor imagery data from trials 1-20. 

The model was created by selecting features that led to the 10 

lowest p-values. We created three data groups by dividing the 

data into 20–trial blocks. When we analyzed the data using this 

model, group 1 accuracy was greater than 80% for all subjects, 

while group 2 accuracy was decreased to near 50%. As a result, 

the point at which the significant difference appeared in group 

1 was not always the same at which significant differences 

were observed in groups 2 and 3. The cause of the decrease in 

classification accuracy was the change in the brain activity of 

the users during the rest period in the middle of the experiment. 

This may have led to over-fitting of the data, as the EEG data 

used to create the model was not present during this time. 

Based on the above results, we need to update the learning 

model for long-term BCIs. In future research, we will 

investigate the causal relationship between operating time and 

classification accuracy in more detail with the aim of building 

a BCI that creates a model that selects suitable data for better 

classification. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix A. Subject’s p-value 
 

Figure A.1: Subject A of p-value in Group1 

 

Figure A.2: Subject A of p-value in Group2 

 

 

Figure A.3: Subject A of p-value in Group3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4: Subject B of p-value in Group1 

 

Figure A.5: Subject B of p-value in Group2 

 

Figure A.6: Subject B of p-value in Group3 

 

Figure A.7: Subject C of p-value in Group1 



 

 

 

Figure A.8: Subject C of p-value in Group2 

 

 

Figure A.9: Subject C of p-value in Group3 

 

 

Figure A.10: Subject D of p-value in Group1 

 

 

 

 

 

 

 

 

Figure A.11: Subject D of p-value in Group2 

 

 

Figure A.12: Subject D of p-value in Group3 

 

 

Figure A.13: Subject E of p-value in Group1 

 

 

 

 

 

 

 



 

 

 

Figure A.14: Subject E of p-value in Group2 

 

 

Figure A.15: Subject E of p-value in Group3 
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