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Abstract.  In manufacturing systems the appropriate production and inventory control is needed to reduce the 

production cost and maintain consumers ’ satisfaction. When the amount of demand is informed to the systems, 

using this properly and managing the production system make the manufacture r increase the profit. Thus 

production and inventory control with advance demand information has been studied in  literature. A production 

system usually consists of multiple stages, between which there is a lead time, and each stage has his own 

production facility. In such a production system advance demand information will be useful but it is difficult to 

analyze its effect theoretically because the system is complicated. In this paper, a two-stage production and 

inventory system with periodic review is considered. Both a base-stock policy system and an extended Kanban 

system with and without advance demand information are considered and formulated. Through numerical 

experiments the average costs and efficiencies are compared among these systems. For systems with advance 

demand information, sensitivity analysis is also developed with respect to the demand lead time, fluctuation of 

demand information and production capacity. 
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1. INTRODUCTION 
 

In most of manufacturing companies it is important to 

control inventory systems appropriately. If the lost sale or 

delay to due date happens then consumer is unsatisfied, which 

leads to loss of consumers in future. On the other hand, more 

products in inventory increase inventory costs becaus e of the 

deterioration of products, falling in the selling price and use of 

wide space of products.  

 Due to development of IT technology, the information  

on consumers becomes easily available. Use of it will be 

expected to decrease production and inventory costs. Advance 

demand information, which is abbreviated as ADI, is useful 

and the research on ADI has been developed. Gallego and Özer 

(2001) consider a single stage inventory model of a retailer and 

show that the base stock policy is optimal when replenish lead 

time is longer than demand lead time. Altendorfer and Minner 

(2014) consider a single stage production and inventory system 

with variable lead time and the optimality condition for base 

stocks and release lead time. Liberopoulos  (2008) analyzes a 

single stage production and inventory system theoretically and 

show optimal base stock decreases in demand lead time. 

Hiraiwa and Nakade (2009) consider a single stage production 

and inventory system with ADI and derive the optimal amount 

of base stock and release lead time under base stock policy. 

In practice, ADI may change in time, because of the 

sudden demand or cancel, and the change in production 

planning of the successive factory. Gayon et al. (2009) 

formulate the production inventory model with imperfect  

information and multiple-type customers into a Markov 

decision process and the optimality of base stock policy which 

is based on information of inventory position and advance 



 

demand. Benjaafar et al. (2011) formulate a single stage 

production system with imperfect information into a 

continuous time Markov decision process and show the 

optimality of base stock policy. In their models, however, the 

continuous-time model is applied, which implies the stop and 

restart of production at any time. This is unrealistic. Benbitour 

and Sahin (2015) consider a single stage production and 

inventory model in a discrete time with perfect and imperfect  

ADI and due date. 

Generally, production system consists of multiple 

manufacturing factories, which orders parts periodically and 

ordered parts are delivered with demand lead time. In such 

multiple stage systems, many production order policies are 

applied: Base stock policies, CONWIP, Kanban, Extended  

Kanban, etc. Ohno (2011) compares these production order 

policies in multiple stage production systems.  

In this paper, performance of pull-type control 

mechanism with and without time-variable ADI is discussed. 

The system is reviewed periodically. Two types of control 

mechanisms, a base stock policy and an extended Kanban 

policy, are applied. A simple Kanban policy is not included 

because basically Kanban is attached to a part and ADI is not 

directly applicable to Kanban control. The recursive equations 

are developed for these mechanism with and without ADI, and 

the relationships between these mechanisms and 

perfect/imperfect ADI are investigated.    

 

2. TWO-STAGE PRODUCTION AND INVENTORY 
SYSTEMS 

 

A two-stage single product production and inventory 

system with periodic review is considered. The time interval 

between successive observations is set as one period. The 

model is illustrated in Figure 1.  

 

 

 

 

 

Figure 1: Production and Inventory System 

 

The system consists of two processes (process 1, process 

2) in the same manufacturer, an upstream supplier (process 0) 

and a customer in downstream of the manufacturer. Demand  

information on final products in advance arrives at the system 

before its due date. Based on the information, the manufacturer 

orders parts to the supplier and delivers finished products to 

the consumer. Demand information may vary in time, and it is 

confirmed one unit time before its due date. When the 

information does not change in time it is called perfect and it  

varies in time the information is called imperfect. The delivery  

time is required from process 0 to process 1 and from process 

1 to process 2 because these processes are in different factory. 

Orders and delivery of products in processes 1 and 2 are made 

at the beginning of each period. Processes 0 and 1 must satisfy 

orders from processes 1 and 2 by delivering them with a fixed  

demand lead time, respectively. Process 0 is assumed to have 

enough inventory and thus there is no backlog between 

processes 0 and 1. On the other hand, backlogs may happen 

between processes 1 and 2, and process  2 and demand. Orders 

from process 2 are determined by considering the upper bound 

of work-in processes. The number of backlogs at the inventory 

of finished products has an upper bound, and the actual 

demand who arrives at the system and finds the current 

backlogs which reach the upper bound is lost.  

Advance demand information for finished products 

arrives at the system 𝐹  periods before (𝐹=0,1,2..). This lead 

time 𝐹 , which is a time interval from the arrival of demand 

information to its due date, is called demand lead time. 𝐹 = 0 

implies that there is no ADI and demand directly arrives at the 

system to receive finished products. 

The following notations are used in this paper. 

𝑌𝑚(𝑛): the amount of demand, which is expected to receive a 

finished product in period m, at the beginning of period n (𝑛 ≤
𝑚 ≤ 𝑛 + 𝐹), 
𝛿𝑚(𝑛): the amount of change of demand, which is expected to 

receive a finished product in period m, at the beginning of 

period n compared with period n-1 (𝑛 + 1 ≤ 𝑚 ≤ 𝑛 + 𝐹), 
𝐼𝑖(𝑛): the amount of parts in buffer in front of process i at the 

beginning of period n (i=1,2), 

𝐽𝑖(𝑛): the amount of parts in a downstream buffer of process i 

at the beginning of period n  (i=1,2), 

𝑄𝑖(𝑛): the amount of parts delivered from process i-1 to i at 

the beginning of period n  ( i =1,2), 

𝐿i : order lead time to process i-1 by process  i (i =1,2), 

𝑇𝑖 : delivery time to process  i from process i-1 (𝐿i > 𝑇𝑖 )(i =1,2), 

𝐼𝑖:𝑚𝑎𝑥 : buffer capacity in front of process i (i=1,2), 

𝐽𝑖:𝑚𝑎𝑥 : capacity of a downstream buffer of process i (i =1,2), 

𝐷𝑚𝑖𝑛 : the minimum of demand,  

𝐷𝑚𝑎𝑥 : the maximum of demand,  

𝐶𝑖(𝑛): the production capacity of process i in period n (i =1,2), 

𝐶𝑖:𝑚𝑖𝑛 : the minimal production rate of process  i (i=1,2), 

𝐶𝑖:𝑚𝑎𝑥 : the maximal production rate pf process i (i=1,2), 

𝐵𝑚𝑎𝑥: the maximal number of backlogs , 

𝑃𝑖
′ : the actual amount of products produced in process i in  

period n (i=1,2). 

Decision variables  

𝑃𝑖 (𝑛) : the amount of products planned to manufacture in 

process i at the beginning of period n (i=1,2), 

𝑂𝑖 (𝑛) : the amount of products ordered to process i-1 from 



 

process i at the beginning of period n (i=1,2). 

The production capacity follows the distribution function 

𝑝𝑘
𝑖 = 𝑃(𝐶𝑖(𝑛) = 𝑘) (𝑘 = 𝐶𝑖:𝑚𝑖𝑛 , … , 𝐶𝑖:𝑚𝑎𝑥).  Demand for 

finished products are mutually independent among periods and 

follow 𝑞𝑘 = 𝑃(𝑌𝑛(𝑛) = 𝑘)  (𝑘 = 𝐷𝑚𝑖𝑛 , … , 𝐷𝑚𝑎𝑥 ).  𝛿𝑛+𝑟(𝑛)  

is an amount of change in demand in unit period  (𝑟 =
1, … , 𝐹 − 1),  and follows a distribution depending on 

𝑌𝑛+𝑟(𝑛).  

The sequence of orders, observation, decision and 

information in one period is illustrated in Figure 2. 

 

 

Figure 2. A Sequence of Parameters in One Period 

 

Cost parameters are defined as follows. 

𝐶𝑖
𝐼: an inventory cost per unit part per unit period in front of  

process i (i=1,2), 

𝐶𝑖
𝐽
:  an inventory cost per unit part per unit period in the 

downstream buffer of process i (i=1,2), 

𝐶𝑖
𝑄
: an inventory cost per unit part per unit period in delivery 

from process i-1 to process i (i=1,2), 

𝐶𝑖
𝐵: a backlog cost per unit part per unit time in process i (i  

=1,2), 

𝐵𝑖: a backlog cost for each occurrence of backlog per unit time 

in process i (i =1,2), 

𝐶𝑙: the lost sale cost per unit demand in process 2. 

      In this paper, we derive the average costs under sub-

optimal base stock policy and extended Kanban policy, which  

are compared under several parameter sets. These policies  

decide the numbers of orders and produced items in processes 

1 and 2 after observing the state of the system at the beginning 

of each period. 

Next we formulate our system as a Markov process. At 

the beginning of period n, the state of the system 𝑠𝑛 is given 

by  

𝑠𝑛 = (𝐼1(𝑛), 𝐽1(𝑛), 𝐼2(𝑛), 𝐽2(𝑛), 𝑌𝑛(𝑛), … , 𝑌𝑛+𝐹−1(𝑛),  

𝑂1(𝑛 + 1 − 𝐿1 + 𝑇1), … , 𝑂1(𝑛 − 1), 
𝑄1(𝑛 + 1 − 𝑇1), … , 𝑄1(𝑛), 𝑂2(𝑛 + 1 − 𝐿2 + 𝑇2), 
… , 𝑂2 (𝑛 − 1), 𝑄2(𝑛 + 1 − 𝑇2), … , 𝑄2(𝑛)). 

The space of possible states is defined as S. When the state is 

observed, the action is decided, which consists of pairs of 

amounts of orders and planned products in process es 1 and 2:   

𝑎𝑛 = (𝑂1(𝑛), 𝑃1 (𝑛), 𝑂2 (𝑛) , 𝑃2 (𝑛)). 

For state 𝑠𝑛 ∈ 𝑆, the sets of possible amounts of orders and 

products in process i, which are defined as 𝐾𝑖
𝑂 (𝑠𝑛)  and 

𝐾𝑖
𝑃 (𝑠𝑛), 𝑖 = 1,2 respectively, are given as follows. 

𝐾1
𝑃(𝑠𝑛) = {0, … ,min(𝐼1(𝑛), 𝐶1:𝑚𝑎𝑥 , 𝐽1:𝑚𝑎𝑥 − 𝐽1(𝑛))}, 

       𝐾2
𝑃(𝑠𝑛) = {0, … ,min (𝐼2(𝑛), 𝐶2:𝑚𝑎𝑥 , 𝐽2:𝑚𝑎𝑥  

−𝐽2(𝑛) + 𝑌𝑛(𝑛))}, 

    𝐾1
𝑂(𝑠𝑛) = {0, … ,𝐼1:𝑚𝑎𝑥 − 𝐼1(𝑛) − ∑ 𝑂1(𝑛 − 𝑙)

𝐿1−𝑇1−1
𝑙=1   

−∑ 𝑄1(𝑛 − 𝑙)
𝑇1−1
𝑙=0 },  

     𝐾2
𝑂 (𝑠𝑛) = {0, … ,min (𝐼2:𝑚𝑎𝑥 − 𝐼2(𝑛) − [−𝐽1(𝑛)]

+

 −∑ 𝑂2(𝑛 − 𝑙)
𝐿2−𝑇2−1
𝑙 =1 − ∑ 𝑄2(𝑛 − 𝑙)

𝑇2−1
𝑙=0 , 

min (𝐼1(𝑛), 𝐶1:𝑚𝑎𝑥 , 𝐽1:𝑚𝑎𝑥 − 𝐽1(𝑛)) + 𝐽1(𝑛)}.  

The Cartesian product of 𝐾𝑖
𝑂 (𝑠𝑛)  and 𝐾𝑖

𝑃(𝑠𝑛)  ( 𝑖 =
1,2)  is given by 𝐾(𝑠𝑛) . Then for each 𝑠𝑛 ∈ 𝑆  and  𝑎𝑛 ∈
𝐾(𝑠𝑛) the transition to the next state is given as follows.  

𝑌𝑛+𝑟(𝑛 + 1) = 𝑌𝑛+𝑟(𝑛) + 𝛿𝑛+𝑟(𝑛)  ,(𝑟 = 1, … , 𝐹 − 1)  

𝐼1(𝑛 + 1) = 𝐼1(𝑛) + 𝑄1(𝑛 + 1 − 𝑇1) − 𝑃1
′(𝑛),  

𝐼2(𝑛 + 1) = 𝐼2(𝑛) + 𝑄2(𝑛 + 1 − 𝑇2) − 𝑃2
′ (𝑛) ,  

𝐽1(𝑛 + 1) = 𝐽1(𝑛) + 𝑃1
′ (𝑛) − 𝑂2(𝑛 + 1 − 𝐿2 + 𝑇2),  

𝐽2(𝑛 + 1) = max(𝐽2(𝑛) + 𝑃2
′(𝑛) − 𝑌(𝑛), −𝐵𝑚𝑎𝑥 ).  

 The actual amounts of produced items, 𝑃𝑖
′(𝑛), and 

the amounts of products to deliver from process i, 𝑄𝑖(𝑛), 
for i=1,2, in period n, satisfy the following equations.   

𝑃1
′(𝑛) = 𝑚𝑖𝑛(𝑃1 (𝑛) ,𝐶1(𝑛)),  

𝑃2
′ (𝑛) = 𝑚𝑖𝑛(𝑃2 (𝑛), 𝐶2(𝑛)),  

𝑄1(𝑛) = 𝑂1(𝑛 − 𝐿1 + 𝑇1),  

𝑄2(𝑛) = 𝑚𝑖𝑛(𝑂2(𝑛 − 𝐿2 + 𝑇2 ) + [−𝐽1(𝑛 − 1)]
+ ,  

𝑃1
′(𝑛 − 1) + [𝐽1(𝑛 − 1)]

+). 
Thus the transition probability that the state becomes  𝑠𝑛+1 

when the action 𝑎𝑛   is taken in state 𝑠𝑛 ,  defined as 

 𝑝(𝑠𝑛+1|𝑠𝑛 ,𝑎𝑛), is given as follows. 
 

𝑝(𝑠𝑛+1|𝑠𝑛 ,𝑎𝑛 )  

=

{
 
 
 
 
 

 
 
 
 
 

𝑝𝑐1
1 × 𝑝𝑐2

2 × 𝑞𝑑 × Δ(𝑘1,… , 𝑘𝐹−1|𝑠𝑛)

𝑖𝑓 𝑠𝑛+1=

(

 
 
 
 
 
 

𝐼1(𝑛) +𝑄1(𝑛 + 1−𝑇1 )− min(𝑃1(𝑛), 𝑐1),
𝐽1(𝑛)+ min(𝑃1(𝑛), 𝑐1)− 𝑂2(𝑛+ 1− 𝐿2 +𝑇2 ),
𝐼2(𝑛) + 𝑄2(𝑛 +1 −𝑇2 )− min(𝑃2 (𝑛), 𝑐2) ,

max(𝐽2(𝑛)+ min(𝑃2 (𝑛), 𝑐2) −𝑌𝑛(𝑛).−𝐵𝑚𝑎𝑥) ,
𝑌𝑛+1(𝑛)+ 𝑘1,… , 𝑌𝑛+𝐹−1(𝑛)+ 𝑘𝐹−1, 𝑑,

𝑂1(𝑛+ 2− 𝐿1 + 𝑇1),… , 𝑂1(𝑛),𝑄1(𝑛 + 2− 𝑇1),… ,
𝑄1(𝑛 +1),𝑂!(𝑛 +2 −𝐿2 +𝑇2 ),… , 𝑂2(𝑛),

𝑄2(𝑛 + 2− 𝑇2), … ,𝑄2(𝑛 + 1) )

 
 
 
 
 
 

(𝐶𝑖:𝑚𝑖𝑛 ≤ 𝑐𝑖 ≤ 𝐶𝑖:𝑚𝑎𝑥, 𝑖 = 1,2  𝐷𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝐷𝑚𝑎𝑥)

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Here, Δ(𝑘1,… , 𝑘𝐹−1|𝑠𝑛)  is the probability on demand  

fluctuation and given by  

 Δ(𝑘1,… ,𝑘𝐹−1|𝑠𝑛) 
= 𝑃(𝛿𝑛+1(𝑛) = 𝑘1,… , 𝛿𝑛+𝐹−1(𝑛) = 𝑘𝐹−1|𝑌𝑛+1(𝑛),… , 𝑌𝑛+𝐹−1(𝑛)). 

We define an indicate function on event e as 

𝐻(𝑒) = {
1  (event  𝑒 happems),

0  (event 𝑒 does  not happen).
 

Then the expected cost in period n when action 𝑎𝑛  is taken 

for state 𝑠𝑛, denoted by 𝑐(𝑠𝑛 ,𝑎𝑛), is given by  



 

𝑐(𝑠𝑛 ,𝑎𝑛 )=∑ {2
𝑖=1 𝐶𝑖

𝐼𝐼𝑖(𝑛) + 𝐶𝑖
𝐽[𝐽𝑖(𝑛)]

+   

+𝐶𝑖
𝑄∑ 𝑄𝑖(𝑛 − 𝑙)

𝑇𝑖−1
𝑙=0 + 𝐶𝑖

𝐵[−𝐽𝑖(𝑛)]
+ + 𝐵𝑖𝐻(𝐽𝑖(𝑛) < 0)}  

  +𝐶𝑙 ∑ 𝑃{𝐶2(𝑛) = 𝑐2} ×
𝐶2:𝑚𝑎𝑥
𝑐2=𝐶2:𝑚𝑖𝑛

[𝑌𝑛(𝑛) − 𝐵𝑚𝑎𝑥 − 𝐽2(𝑛)  

−min(𝑃2 (𝑛), 𝑐2)].  

For given policy which determines action 𝑎(𝑠) for each state   

𝑠(∈ 𝑆) , the steady-state probability 𝜋 = {𝜋𝑠; 𝑠 ∈ 𝑆}  can be 

obtained and the average cost g is given by 

𝑔

= ∑𝜋𝑠
𝑠∈𝑆

𝑐(𝑠, 𝑎(𝑠)).                                                  (1) 

 

3. PRODUCTION AND ORDERING POLICIES 
 

3.1 Base Stock Policy with ADI 
 

Here the base stock policy is discussed in our model. The 

base stock policy controls the inventory positions in each 

process as to maintain a fixed amount of echelon inventory. 

Here, the value of base stock in process 𝑖 is denoted by 𝑠𝑖 
for 𝑖 = 1,2, where  

𝑠1 ≥ 𝑠2, 
because the echelon inventory of process 1 includes the 

amount of products in process 2. In our model, the echelon 

inventory of process i is assumed to include the products 

placed in a front buffer of process i. In addition, when the 

demand information arrives, if it is used then the inventory 

position will decrease. On the other hand, if the demand 

information is not used the inventory position does not change 

by arrival of this information.    

   Under base stock and extended Kanban policies, the 

information on demand after order lead time 𝐿2 or later is not 

used, because products are ordered based on the predetermined 

amount of base stocks, as to meet the future demand at its 

arrival. In addition, the use of such demand information will  

lead to the increase of base stock level and more products in 

inventory. Thus, in the following, it is assumed that if 𝐹 ≤ 𝐿2 , 
the advance demand information from period n to period n+F-

1 is available, and the information from period n+F to period 

𝑛 + 𝐿2  is not used in period n, whereas if 𝐹 > 𝐿2,  all 

advance information from period n to 𝑛 + 𝐿2  is available. 

Thus the total amount of available advance demand informed 

at period n to compute the inventory position in period 𝑛 , 

which is denoted by 𝑂𝑛
𝐿2, is given by 

𝑂𝑛
𝐿2 =

{
 
 

 
 
∑𝑌𝑛+𝑖(𝑛)

𝐹−1

𝑖 =0

    (𝐹 ≤ 𝐿2),

∑ 𝑌𝑛+𝑖(𝑛)

𝐿2

𝑖 =0

    (𝐹 > 𝐿2).

           

                                              (2) 

For the inventory positon of process 2 in period 𝑛, which is 

denoted by 𝑥2(𝑛),  is given by  

𝑥2(𝑛) 

≡ 𝐼2(𝑛) + 𝐽2(𝑛) + ∑ 𝑂2(𝑛 − 𝑖)

𝐿2−𝑇2−1

𝑖=1

+ ∑ 𝑄2(𝑛 − 𝑖)

𝑇2−1

𝑖=0

− 𝑂𝑛
𝐿2 . 

                                               (3) 

For the inventory position of echelon inventory of process 1 in 

period 𝑛, denoted by 𝑥1(𝑛), we have 

𝑥1(𝑛) ≡ 𝐼1(𝑛) + 𝐽1(𝑛) 

+ ∑ 𝑂1(𝑛 − 𝑖)

𝐿1−𝑇1−1

𝑖=1

+ ∑ 𝑄1(𝑛 − 𝑖)

𝑇1−1

𝑖=0

+ 𝐼2(𝑛) + 𝐽2(𝑛) − 𝑂𝑛
𝐿2 . 

                                              (4) 

When the demand information is imperfect and it is possible 

that 𝛿𝑛+𝑖(𝑛)  takes the negative value, the inventory position 

may exceed the amount of base stock. In this case, there is no 

order until the position is under the base stock level, and thus 

it follows that    
𝑂𝑖(𝑛) = max{0, 𝑠𝑖 − 𝑥 𝑖(𝑛)}. 

In particular, when the demand information does not decrease 

(that is, 𝛿𝑛+𝑖(𝑛)  is non-negative), the inventory position does 

not exceed the base stock level. Thus for each additional 

demand information 𝛿𝑛+𝑖(𝑛) the order is made and thus  

𝑂i(n)

=

{
 
 

 
 
𝑌𝑛+𝐹−1(𝑛) +∑ 𝛿𝑛+𝑘−1(𝑛 − 1)

𝐹−1

𝑘=0

    (𝐹 ≤ 𝐿2),

𝑌𝑛+𝐿2
(𝑛) +∑𝛿𝑛+𝑘−1(𝑛 − 1)

𝐿2

𝑘=0

   (𝐹 > 𝐿2).

 

In any case, the amount of planned produced items is  

𝑃𝑖 (𝑛) = min{𝐼𝑖(𝑛), 𝐶𝑖:𝑚𝑎𝑥}. 

Using the above values the action for each state is determined  

and transition probabilities and an expected cost per unit time 

is determined by equations shown in section 2.  

 

3.2 Base Stock Policy without ADI 
 

Inventory positions in period 𝑛 are given as  

𝑥2(𝑛) ≡ 𝐼2(𝑛) + 𝐽2(𝑛) + ∑ 𝑂2(𝑛 − 𝑖)

𝐿2−𝑇2−1

𝑖=1

+ ∑ 𝑄2(𝑛 − 𝑖)

𝑇2−1

𝑖=0

, 

𝑥1(𝑛) ≡ 𝐼1(𝑛) + 𝐽1(𝑛) + ∑ 𝑂1(𝑛 − 𝑖)

𝐿1−𝑇1−1

𝑖=1

 

+ ∑ 𝑄1(𝑛 − 𝑖)

𝑇1−1

𝑖=0

+ 𝐼2(𝑛) + 𝐽2(𝑛). 



 

                                               (5) 

By setting 𝐼1(0) = 𝑠1− 𝑠2，𝐼2(0) = 𝑠2 ,  𝐽1(0) = 𝐽2(0) = 0 

we have  

𝑂𝑖(𝑛) = 𝑌𝑛−1(𝑛 − 1),  
𝑃𝑖 (𝑛) = 𝑚𝑖𝑛{𝐼𝑖(𝑛), 𝐶𝑖:𝑚𝑎𝑥 }. 

 
3.3 Extended Kanban Policy 
 

Extended Kanban policy is the combination of base stock 

and Kanbans. Parameters are the amounts of base stocks 𝑠1 , 
𝑠2 , the amounts of withdrawal Kanbans 𝑀1,  𝑀2   and the 

amounts of production-ordering Kanbans 𝑁1,  𝑁2 . The 

following must be satisfied. 

𝑠2 ≤ 𝑀2 + 𝑁2 

s1− 𝑠2 ≤ 𝑀1 + 𝑁1. 
The same equations (2) to (4) hold for x𝑖 (𝑛)   when the 

extended Kanban policy with ADI is applied and (5) holds 

when the policy without ADI is applied. Since extended 

Kanban policy takes the minimal value of orders determined  

by base stocks and withdrawal Kanbans as the amount of 

orders, it follows that 

𝑂2(𝑛) = min {[𝑠2− 𝑥2(𝑛)]
+ ,𝑀2 − 𝐼2(𝑛) − [−𝐽1(𝑛)]

+

− ∑ 𝑂2(𝑛 − 𝑙)

𝐿2−𝑇2−1

𝑙=1

− ∑ 𝑄2(𝑛 − 𝑙)

𝑇2−1

𝑙 =0

}, 

𝑂1(𝑛) = min {[𝑠1− 𝑥1(𝑛)]
+ ,𝑀1 − 𝐼1(𝑛)

− ∑ 𝑂1(𝑛 − 𝑙)

𝐿1−𝑇1−1

𝑙=1

− ∑ 𝑄1(𝑛 − 𝑙)

𝑇1−1

𝑙 =0

}. 

The amount of production order is determined by production-

order Kanbans, and thus  

𝑃2 (𝑛) = min{𝑁2 − [𝐽2(𝑛)]
+ , 𝐼2(𝑛), 𝐶2:𝑚𝑎𝑥 }, 

𝑃1 (𝑛) = min{𝑁1− [𝐽1(𝑛)]
+ , 𝐼1(𝑛),𝐶1:𝑚𝑎𝑥 }. 

 

4. NUMEICAL EXPERIMENTS 
 

4.1 Computations of State Space and Steady State 
Probabilities  
 

For numerical comparison of base-stock and extended  

Kanban systems, it is desirable to derive the space of reachable 

states and steady state probabilities for given parameters, and 

derive optimal or sub-optimal sets of parameters in each 

system. In the following the procedures to derive them 

numerically are shown. 

For given parameters under the policy, the action for each 

state is determined. The state space is derived by the following 

procedure. 

Step 1: An initial state is set as the state which will be reached 

under successive no demand. For example, for F=2 and 

parameters (𝑠1, 𝑠2) under the base stock policy,  

𝑠0 = (I1(0), 𝐽1(0), 𝐼2(0), 𝐽2(0), 𝑌0(0), 𝑌1(0), 𝑄0(0))

= (0, 𝑠1 − 𝑠2,0, 𝑠2,0,0,0) 
and for F=2 and parameters (s1, 𝑀1, 𝑁1, 𝑠2, 𝑀2, 𝑁2) under the 

extended Kanban policy, 

𝑠0 = (I1(0), 𝐽1(0), 𝐼2(0), 𝐽2(0), 𝑌0(0), 𝑌1(0), 𝑄0(0)) 
= (min([(𝑠1 − 𝑠2) − 𝑁1]

+,𝑀1
) , 𝑁1 ,min([s2

− 𝑁2]
+ ,𝑀2

) , 𝑁2,0,0,0) 
Let s′ = s0, 𝑆𝑣 = {𝑠′}, 𝑆𝑢 = 𝜙. 
Step 2: For given parameters, the action a in s’ is determined  

under a given policy, and a subset of states is defined as 

S’={j;𝑃(𝑗|𝑠′, 𝑎) > 0} 

Step 3: Set 𝑆𝑢
′ = 𝑆𝑢 ∪ {𝑠

′}, Sv
′ = 𝑆𝑣 ∪ 𝑆′ − 𝑆𝑢

′  . If Sv ≠ 𝜙  

select state 𝑠 ′ in Sv
′ . 𝑠 = 𝑠 ′，𝑆𝑣 = 𝑆𝑣

′，Su = 𝑆𝑢
′  and return  

to step 2. Otherwise terminate the procedure and output S𝑢  as 

a reachable state space. 

If the state space is defined, then the transition 

probabilities are determined. When the transition matrix P is 

defined by transition probabilities, the steady state 

probabilities  𝝅 are given as for given initial probability 𝝅𝟎   

 𝝅 = lim
𝑛→∞

𝝅𝟎𝑷
𝑛 . 

Thus probability 𝝅  is obtained by computing 𝑥 𝑖 =
∑ 𝑥𝑘

′ × 𝑃𝑘𝑖
𝑆𝑚𝑎𝑥−1
𝑘=0 . r epeatedly until 𝑥 𝑖  convergences. When 

𝝅 is computed, the average cost can be derived by (1).   

To derive the set of sub-optimal parameters of base stock 

policies, first set a parameter 𝑠2  for a single process 2 by 

local search, and then fix it and derive a parameter 𝑠1 in the 

two-stage system by local search. The pair of derived 

parameters is an initial parameter set. For extended Kanban 

systems there are three parameters for each process, and so for 

process 2, first set parameters (𝑠2, 𝑀2 , 𝑁2) =
(𝐴, 𝐼2:𝑚𝑎𝑥 , 𝐽2:𝑚𝑎𝑥 ) where A is enough large. Then fix 𝑀2 , 𝑁2 
by decreasing 𝑠2  derive optimal 𝑠2.  After that, fix 𝑠2,𝑁2 

and by decreasing 𝑀2   find optimal 𝑀2  . In the same way 

determine 𝑁2. Then parameter sets of process 2 is fixed. For 

process 1 determine parameters in the two-stage system in the 

same way. After all parameters are computed, start a local 

search with the derived parameters  as an initial parameter set 

and derive a local optimal parameter set. Of course, it is not 

assured that the derived local optimal parameter set is optimal, 

but in results of the following numerical examples  it seems that 

these policies are near optimal policies.   

 

 

 



 

4.2 Data of Numerical Experiments 
 

We first discuss the demand information and policies. 

Common parameters are given as follows. 

𝐶𝑖:𝑚𝑎𝑥 = 3(𝑖 = 1,2) , (𝐷𝑚𝑖𝑛 ,𝐷𝑚𝑎𝑥 ) = (0,3)  , (𝐿1, 𝐿2) =
(1,2)  , (𝑇1, 𝑇2) = (0,1)  , 𝐵𝑚𝑎𝑥 = 2  , (𝐶1

𝐼,𝐶2
𝐼) = (3,6)  , 

(𝐶1
𝐽
,𝐶2

𝐽) = (6,12) , (𝐶1
𝑄
,𝐶2

𝑄) = (0,6) , (𝐶1
𝐵 ,𝐶2

𝐵) = (0,80)  , 
(𝐵1,𝐵2) = (0,120)  , 𝐶𝑙 = 1000 , 𝐼𝑖:𝑚𝑎𝑥 = 8  , 𝐽𝑖:𝑚𝑎𝑥 =
10 (i=1,2), F=2. 

    The demand has the following distribution, which is a 

truncated Poisson distribution. The expected value is 1.410196.  

𝑞0 = 0.223130, 𝑞1 = 0.334695 , 𝑞2 = 0.251021, 
𝑞3 = 0.191153   

The probability on production capacity is considered in the 

following two cases. 

α ∶ 𝑝3
𝑖 = 0.7, 𝑝2

𝑖 = 0.2, 𝑝1
𝑖 = 0.1, 𝑝0

𝑖 = 0 

β ∶ 𝑝3
𝑖 = 0.7, p2

i = 0, 𝑝1
𝑖 = 0.2, 𝑝0

𝑖 = 0.1 

Here 𝑝𝑗
𝑖 = 𝑃(𝐶𝑖(𝑛) = 𝑗), j = 0,1,2,3, i = 1,2.  Four 

combinations are considered: αα , αβ, βα, ββ , where for 

example  αβ  means that process 1 follows type α  whereas 

process 2 follows type β.  

In imperfect ADI, the probability distribution  

𝑞𝑖,𝑗 = 𝑃(𝑌𝑛+1(𝑛 + 1) = 𝑗|𝑌𝑛+1(𝑛) = 𝑖) 

is assumed in one of the following two sets.  

Case 1: 𝑞0,0 = 0.753655, 𝑞1,1 = 𝑞2,2 = 𝑞3,3 = 0.8, 𝑞0,1 =
0.246350, 𝑞1,0 = 0.164230, 𝑞1,2 = 0.035775 , 𝑞2,1 =
0.047700, 𝑞2,3 = 0.152300, 𝑞3,2 = 0.2. 
Case 2: 𝑞0,0 = 0.137817, 𝑞1,1 = 𝑞2,2 = 𝑞3,3 = 0.3, 𝑞0,1 =
0.862183, 𝑞1,0 = 0.574789𝑞1,2 = 0.125211 , 𝑞2,1 =
0.166949, 𝑞2,3 = 0.533051, 𝑞3,2 = 0.7. 
We note that for both cases when  𝑃(𝑌𝑛+1(𝑛) = 𝑗) is set as 

𝑞𝑗, the resulting probability  𝑃(𝑌𝑛+1(𝑛 + 1) = 𝑗) is also the 

same as 𝑞𝑗  for j=0,1,2,3. The size of change of demand is 

stochastically bigger in case 2 than in case 1..  

Here we call the base stock policies with and without ADI 

by Policy B-A and Policy B respectively, and the extended 

Kanban policies with and without ADI by Policy E-A and 

Policy E, respectively. 

 

4.3 The Case with Perfect ADI  
 

Table 1 shows the sub-optimal parameter sets and the 

sub-optimal average cost under policies B, E, B-A and E-A , 

each of which four combinations of production capacities are 

considered. As shown, B-A and E-A for F=1 are better than B 

and A respectively, and are worse than B-A and E-A for F=2 

respectively. Policy E is much superior to Policy B. In 

particular, from detail analysis of numerical results it is found 

that the inventory cost is much smaller under policy E 

compared with policy B, by the effect of Kanbans. On the other 

hand, both policies have almost the same the delivery and 

backlog costs. When process 2 has more production capacity, 

the extended Kanban policy has much better performance than 

the base stock policy.  

When perfect ADI is used, under both policies the cost 

decreases. In particular for F=2, Policy B-A attains good 

performance and is similar to Policy E-A for all production 

capacity cases. Thus perfect ADI is more effective under the 

base stock policy than under the extended Kanban policy. 

 

Table 1: Results under perfect ADI 

 

 

4.4 The Case with Imperfect ADI 
  

For imperfect advance demand information, cases 1 and 

2, policies B-A and E-A are compared when F=2. The results 

are shown in Table 2.   

For case 1, the suboptimal parameter sets are the same as 

perfect ADI, but the average cost is greater under both policies.  

In particular, when both processes have production capacity 

distribution α , the time-variant property of ADI worse the 

average cost. In particular, the backlog cost is increased under 

imperfect ADI. That is, the change in time of demand 

information mostly influences backlogs. 

Policy s1 M1 N1 s2 M2 N2 average cost

αα 10 8 74.54638

αβ 10 9 89.61155

βα 11 8 84.62245

ββ 12 9 98.50113

αα 10 5 3 9 8 4 67.58925

αβ 11 6 3 10 8 6 87.08353

βα 11 6 5 9 8 4 77.05313

ββ 12 6 5 10 8 6 94.94034

αα 8 6 67.19144

αβ 9 7 85.42022

βα 9 6 78.65704

ββ 10 7 94.69493

αα 8 5 4 6 8 4 63.82044

αβ 9 5 3 8 8 6 83.64551

βα 9 6 6 6 8 4 74.86397

ββ 10 6 6 8 8 6 92.63474

αα 6 4 59.77750

αβ 7 6 80.83257

βα 8 4 73.31085

ββ 8 6 91.20191

αα 6 6 4 4 8 4 59.55409

αβ 7 5 4 6 8 6 80.51865

βα 8 6 7 4 8 4 72.86934

ββ 8 6 6 6 8 6 90.55633

B

E

B-A

E-A

B-A

E-A

F=1

F=2



 

Compared with case 1, case 2 has worse performance 

because of more variance of ADI. Case 2 has the same 

parameters as case 1 under policy B-A, whereas sub-optimal 

E-A policy increases the amount of base stocks with smaller 

Kanbans. In fact, under E-A policy the number of products in 

front of each process is greater and the number of products 

after processes is smaller than those under B-A policy. 

Therefore, under E-A policy more products are in each process, 

but Kanbans make the parts wait for process under imperfect  

information. As a result, the difference of average costs 

between E-A and B-A policies is greater under case 2 

compared with case 1. Thus when ADI is imperfect , 

appropriate numbers of Kanbans may be more useful than in  

the case of perfect ADI.  

 

Table 2: Results under Imperfect ADI 

 

 

5. CONCLUSION 
 

In this paper, a two-stage production and inventory 

system with ADI are considered. Base stock and Extend  

Kanban policies are applied and the system under each policy  

is formulated as a Markov chain. Performance of these policies 

with and without ADI is evaluated by numerical examples . 

When ADI is applied, the difference of both policies is smaller, 

but when the fluctuation of imperfect ADI increases, Kanbans 

still have a positive effect for controlling production. 

More numerical comparison and sensitivity analysis are 

needed to confirm properties of these control mechanisms and 

effects of ADI under these controls. In addition, theoretical 

comparison will be needed under several control mechanisms  

with and without ADI. Comparison with other production 

control policies and optimal policies which can be computed 

by Markov decision processes is also left for future research. 
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Policy s1 M1 N1 s2 M2 N2 average cost

αα 6 4 61.25221

αβ 7 6 81.74380

βα 8 4 74.26519

ββ 8 6 92.03674

αα 6 6 4 4 8 4 60.67295

αβ 7 5 4 6 8 6 81.26103

βα 8 6 7 4 8 4 73.34775

ββ 8 6 6 6 8 6 91.20015

αα 6 4 64.10062

αβ 7 6 83.98064

βα 8 4 79.19906

ββ 9 6 64.50480

αα 6 6 4 4 8 4 62.80729

αβ 7 5 3 6 8 6 83.30052

βα 8 6 6 5 8 4 74.41647

ββ 9 6 5 7 8 6 93.14097

B-A

E-A

Case 2

Case 1 

B-A

E-A


