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Abstract. Cardiovascular disease (CVD) in recent years has become one of the main causes of death in 

Taiwan, which shows that CVD is now a vital factor affecting the lives of many people. Therefore, the early 

warning system can quickly distinguish the related symptoms and prevent the sudden cardiopathy that will be 

an important topic for the mortality can be decreased. In this paper, the electrocardiogram (ECG) data of 

arrhythmia cases with normal persons would be collected for discriminating the extraordinary ECG signal.      

Firstly, the empirical mode decomposition (EMD) is used to decompose the ECG signal and selected the 

appropriate intrinsic mode functions (IMF) transformed to the MSE profile. Using the transformed curves, the 

research then used the polynomial function to fit these profiles and to execute the monitoring task. On the 

other hand, the classified result of cardiopathy symptom is also applied to construct the Hotelling T2 control 

chart and monitor the estimated parameters in different MSE profiles. The experimental results show that the 

proposed system exhibited a better performance for detecting the exceptional situation. Moreover, it also 

provided a stable result for evaluating the cardiopathy. 
 

Keywords: Cardiovascular disease (CVD), electrocardiogram (ECG), empirical mode decomposition (E

MD), intrinsic mode functions (IMF) 

 

 

1. INTRODUCTION 
 

According to the relevant statistics of the Ministry of 

Health and Welfare in recent years, cardiovascular disease 

(CVD) still exerts a serious impact on patient health and 

consumes huge medical resources. Most current researches 

related to CVD explored the correct diagnosis of CVD via a 

single auxiliary instrument; while few probed how to 

prevent and control CVD through a simple and portable 

electrocardiograph and physiological indicators. Through 

waveform characteristics, traditional ECG signals can be 

classified into P, Q, R, S, and T waves. Doctors or 

professional medical staff can obtain important information 

from ECG clinical diagnosis. Studies of the previous 

decade proposed many algorithms to detect QRS waves, 

including neural networks (Hu et al. 1993; Dokur and 
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Ölmez 2001; Osowski and Linh 2001; Gűler and Űbeyli 

2005; Özbaya et al. 2006), wavelet conversion (Mallat and 

Hwang 1991; Cuiwei et al. 1995; Dinh et al. 2001), genetic 

algorithms (Poli et al. 1995), filter groups (Afonso et al. 

1999), etc.  

Multiscale entropy (MSE) has been applied to analyze 

relevant signals. Kasper and Schuster (1987) developed the 

K-S algorithm, which simplified complexity. Richman et al. 

(2000) continued to improve the disadvantage of entropy, 

and put forward the concept of sample entropy (SampEn). 

Costa et al. (2003) developed multiscale entropy (MSE), 

and calculated its complexity from the multiscale 

perspective. In a study on ECG signals, Costa et al. (2005) 

pointed out that MSE analysis was imported after empirical 

mode decomposition (EMD). The complexity of entropy of 

the young and healthy elderly while awake was on the rise; 

and the complexity of the former was significantly higher 

than that of the latter. During sleep, the complexity showed 

a downward trend. 

From the perspective of "disease surveillance", this 

study analyzed frequency domain through the ECG signals 

in a database. First, the original ECG signals were 

decomposed, via the EMD theory, and combined with 

appropriate intrinsic mode functions (IMF). Combined with 

the multiscale entropy (MSE) theory, linear classification, 

and a control chart, this combination of signals was used to 

monitor abnormal ECG signals and serve as a basis for 

disease classification.  

 

2. RESEARCH METHOD  
 

This study used EMD to decompose the original ECG 

signals, which were combined with screened IMF for MSE 

curve conversion. Then, the LSD theory was employed to 

distinguish between normal and abnormal ECG signals 

with the converted MSE, and abnormal signals were 

preliminarily classified and analyzed. Meanwhile, the 

control limit of the MSE curve was established in order to 

monitor the changes of diseases, and combined with profile 

monitoring theory (see Figure 1). 

 

The EMD method is firstly used  to 

decompose the ECG signal and construct 

the different IMF functions

Screen the  appropriate IMF for 

transfering the MSE profile

Using  Hotelling T
2 
control chart to execute 

the monitoring task for the extraordinary 

situation

In terms of the monitoring results,  the 

profile monitoring method is applied to 

construct the early warning system.

The LSD method is applied to establish the 

control limit using the parameters of 

profile model

 

Figure 1: The flowchart for the proposed method 

 

2.1 Empirical Mode Decomposition (EMD) 
 

The process to decompose EMD to obtain each IMF is 

known as the shifting process. The original signals after the 

shifting process result in a set of IMF. Restricted conditions 

are checked; if restricted conditions are not met, 

decomposition and the shifting process shall be continued 

in order to obtain the next set of IMF. These steps shall be 

repeated till they are in line with the restricted conditions. 

The last set of IMF is the mean value trend. The steps of 

shifting process are described, as follows:  

(1) Identify the local maximum and minimum values of 

the original signal ( )X t . Cubic spline was employed 

to connect local maximum values into a maximum 

envelope line; and local minimum values into a 

minimum envelope line. Then, calculate the mean 

1( )m t
 

of the two envelope lines. Subtract the original 

signal ( )X t  by the mean envelope line 
1( )m t

 
to 

obtain 1( )h t
 

weight, as shown in Eq. (1). Figure 2 

refers to the steps from (1) to (2). 

 

1 1( ) ( ) ( )X t m t h t                (1) 

 



 

Figure 2: Shifting process diagram (see Huang et al. 1998) 

 

In the above figure; (a) refers to the original signals; 

solid line (b) refers to the original signals, the dotted 

line to the maximum and minimum envelope lines and 

the bold solid line to the mean envelope line; (c) 

denotes the weight after the original signals were 

subtracted from the mean envelope line 
1( )h t . (Huang 

et al., 1998)  

(2) Check whether the 
1( )h t

 
weight complies with the 

restricted constraints. If not, return to step (1). Regard 

1( )h t
 

weight as the original signal to continue the 

second shift to obtain 
11( )h t , as shown in Eq. (2).

 
 

 

 
1 11 11( ) ( ) ( )h t m t h t               (2) 

 

(3) If the original signal ( )X t  after k times of repeated 

shifting reaches the restricted conditions of IMF, it can 

become a weight 
1, ( )kh t

 
of IMF, as shown in Eq. (3).

 
 

  

1, 1 1, 1,( ) ( ) ( )k k kh t m t h t              (3) 

 

(4) Setting convergence and stop conditions for the 

shifting process 

(5)  The original signal ( )X t  was subtracted by the first 

IMF weight 
1( )c t

 
to obtain co-function 

1( )r t , as 

shown in Eq. (4).
 
 

  

1 1( ) ( ) ( )X t c t r t               (4) 

 

(6) If co-function 1( )r t
 

contains a long period weight, 

repeat steps (1) to (4) and continue shifting co-function 

1( )r t
 

to decompose n IMF weight ( )nc t , as shown in 

Eq. (5).
 
 

 

              (5) 

 

(7) When co-function ( )nr t
 

cannot decompose IMF 

weight, stop the shifting process. The final co-function 

of ( )nr t
 

is the mean trend. Finally, sum up all IMF 

weights ( )nc t
 

and the mean trend to obtain the 

original signal ( )X t . In other words, Eqs. (4) and (5) 

were added to obtain Eq. (6).
 
 

 
1

( ) ( ) ( )
n

k n

k

X t c t r t


             (6) 

 

2.2 Conversion of IMF function with multiscale 
entropy (MSE) 

 
The MSE theory is imported to the screened IMF in 

order to analyze abnormal CVD. First, conduct the coarse-

graining procedure on the screened IMF. Obtain one mean 

value of two value points in order to obtain another serial. 

Then, calculate the sample entropy, as shown in Eq. (7). 

The sample entropy of scale2 is obtained. Then, obtain one 

mean value of the three points of the values in order to 

obtain another serial. Then, calculate the sample entropy. 

The sample entropy of scale3 is obtained, the remaining 

entropy at different times can be completed in the same 

manner, and add them together to obtain the complexity 

index (CI). Figure 3 shows MSE curve, while Eq. (8) is the 

formula to calculate CI.  

 

( 1)

( )

1
 ( , , ) ln

i m

i m

C N m
Sample En m r N

C N m

  
 






      (7) 

 

1

 ( ),   

 ,   

n

i

CI Sample En i

i scale factor n total scale





 


         (8) 

 

Then, import the sample entropy after data reduction with 

the multiscale method; this is the concept of multiscale 

entropy. Hence, this study assessed the changes of disease 

via this feature. Regarding operation, first convert the 

signal graphics of the screened IMF with the MSE theory to 

1 2 2

1

( ) ( ) ( )

( ) ( ) ( )n n n

r t c t r t

r t c t r t

 

 



the non-linear profile graphics in Figure 3. Then, select the 

eigenvalue and monitor the curve for the next stage.   

 

Scale

SamEn

 

Figure 3: Converted MSE curve 

 

2.3 Classification of abnormal MSE curves with 
LDA 

 

Abnormal ECG signals were classified by linear 

classification according to the MSE curve parameters. First, 

the classification straight line of linear discriminate 

analysis (LDA) should be established. Hence, the following 

formula was used to calculate slope 
cw

 
and intercept the 

0cw
 

of the classification line:
 

 

 

0

0   if Group 1
( )   

0   if Group2
c c cg w

 
  

 

x
x w x

x
        (9) 

 

The Fisher theory was applied to establish the classification 

line, where the criteria were the intra-group and inter-group 

scale values of variation. The slope 
cw

 
of the 

classification line was obtained via the criteria (as shown in 

Eq. (10)).  

 

2

1 2( )c

F

c W c

J
 




w m m

w S w
             (10) 

 

Eq. (10) is mainly used to calculate 
cw

 
when

 
J reached 

the maximum value, where 
1m
 

and
 2m

 
are

 the 
means of 

different types of groups; and 
WS

 
supposed the pooled 

within-class sample covariance matrix, which is 

represented, as follows:
  

 

 1 1 2 2

1 ˆ ˆ

2
n n

n
  


           (11) 

 

In 1̂  and 2̂  of the above formula, some are Category 

1 (
Group 1 ) (e.g.: ventricular fibrillation) and Category 2 

(
Group 2  ), which are roughly similar to the estimated 

variation matrix 
1 2( 2 )n n n  

.
 

 

3. SIMULATION AND ANALYSIS  
 

This study selected 24 lead I ECG original signals; 

wherein, two were arrhythmia signals. The original signals 

were decomposed to obtain several intrinsic mode 

functions (IMF) of different frequency bands and one 

residual. The original signals collected by this study could 

be decomposed into eight IMF and one residual. Through a 

combination of different IMF, this study found that IMF2, 

IMF3, and IMF4 have strong ability to distinguish 

abnormal signals. Hence, we used frequency bands from 

IMF2 to IMF4 to reconstruct the ECG signals for analysis. 

Then, we converted the reconstructed signals into MSE via 

Eqs. (7) and (8). The polynomial model of order 4 was used 

to conduct model fitting, which is described, as follows: 

 

4

0

1

,   1, ,r

p p rp p

r

y x p q  


           (12) 

 

where 
0 p

 
and 

rp  are the estimated parameters of the 

polynomial model of order 4; where r represents the 

number of scales. Through the operation of Eq. (12), Table 

1 displays the fitting results of the 24 MSE profile models. 

Abnormal and normal ECG MSE curves were classified 

through the five parameters (
0 1 2 3 4, , , ,     ) of the 

polynomial model of order 4 and the LSD theory. The 

results show that, the classification of the parameters can 

distinguish 100% of the differences between normal and 

abnormal ECG MSE curves. The results were used to 

establish the Hotelling T2 control chart in order to detect 

on-line anomalies. The test results in Figure 6 clearly show 

that, profiles 6 and 11 exceed the control limits. The 

original information corresponding to the two profiles is 

determined as abnormal ECG. The results also show that 

the framework proposed by this study can be used to detect 

abnormal on-line ECG with excellent detection sensitivity.
 

 

 

Table 1: The fitting results of MSE curves 

Sample 1 2 3 4 5 6 

 0.9902 0.9886 0.9903 0.9910 0.9874 0.9897 
 

0.9872 0.9813 0.9869 0.9896 0.9813 0.9815 

Sample 7 8 9 10 11 12 

 0.9911 0.9901 0.9788 0.9888 0.9909 0.9910 
 

0.9897 0.9899 0.9704 0.9817 0.9889 0.9887 

2R
2

adj
R

2R
2

adj
R



Sample 13 14 15 16 17 18 

 0.9913 0.9874 0.9901 0.9895 0.9899 0.9885 
 

0.9896 0.9827 0.9891 0.9808 0.9832 0.9803 

Sample 19 20 21 22 23 24 

 0.9913 0.9905 0.9889 0.990 0.9876 0.9914 

 
0.9881 0.9843 0.9834 0.9811 0.9809 0.9897 

 

 
 

 

Figure 4: The schematic diagram for decomposition of the 

original signals 

 

 
Figure 5: On-line monitoring results of ECG MSE profiles 

 

4. CONCLUSION 
 

In this study, as the ECG signals were non-steady and 

non-linear, Fourier analysis could not be applied. In view of 

this, this study adopted EMD combined with IMF to handle 

lead I original signals and analyze frequency domains. First, 

EMD was employed to filter the signals. The original COP 

signals were decomposed into several different frequency 

bands. The results show that, the weights from IMF2 to 

IMF4 after decomposition have good distinguishing ability. 

Then, the reconstructed signals were converted into MSE 

profiles, while abnormal signals were classified. According 

to the above simulation results, this study proposed relevant 

suggestions and notes, as follows:  

(1) If the original signals are non-steady, EMD can be used 

to decompose them into steady signals for analysis with 

the noise filtering function.  

(2) It is a key step to combine and reconstructed the signals 

of the screened IMF vectors. If IMF weights, which can 

clearly distinguish different features, cannot be selected, 

the ECG on-line monitoring cannot be successfully 

implemented.  

(3) It is found that, the parameters of the polynomial model 

of order 4 converted from MSE profiles can correctly 

monitor abnormal signals.  

(4) If the rebuilt signals have good distinguishing ability, 

then their multi-variable control chart shall be able to 

perform on-line monitoring. However, it is worth noting 

that different types of control charts have different 

sensitivities. How to choose control charts with fewer 

types I and II errors for monitoring will be topics 

worthy of future studies.  
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