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Abstract. This paper presents a bi-objective optimization model for determining the optimal 

time-varying numbers of cashiers and pharmacists in a large hospital. The two objectives of this 

model are to minimize the waiting cost incurred by patients and the operating costs incurred by 

the hospital. A point-wise fluid-based approximation approach is adopted to construct a dynamic 

queueing network that takes into account time-varying (or non-stationary) arrivals of patients 

and describes time-varying queue lengths. The dynamic queueing network is then encapsulated 

in the optimization model that determines optimal time-varying numbers of cashiers and 

pharmacists. A test problem instance is designed based on a large hospital in the city of Taipei, 

and the MINOS solver of GAMS is applied to solve the problem instance. Numerical results 

show that the optimization model can provide an optimal allocation of manpower that 

significantly reduces both waiting and operating costs. 
 
Keywords: Queueing theory, Mathematical programming, Healthcare management, Manpower 

allocation 

 

1. INTRODUCTION 

In Taiwan, after the National Health Insurance 

system was implemented in 1995, hospitals sought to 

reduce operational costs and increase their revenues. 

Servicing a larger number of patients is one way to 

increase such revenues. Moreover, increasing 

satisfaction among patients becomes an important 

consideration for hospital managers. Most hospitals 

adopt various indices to evaluate their service quality, 

one of them being patient waiting time, which greatly 

affects patient satisfaction. Apart from outpatients’ 

waiting times for diagnoses from doctors, the waiting 

times or queue lengths at cashier and pharmacy 

counters have long been a major concern for hospital 

managers and their patients, especially during rush hour 

when extended wait times generate numerous 

complaints. Although increasing the number of cashiers 

and pharmacists is a straightforward way of reducing 

patients’ wait times, this approach inevitably raises 

hospitals’ operating costs and may be inefficient during 
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off-peak hours. Instead, allocating appropriate numbers 

of cashiers and pharmacists at different time periods 

during a given day to strike a balance between patient 

wait times and hospitals’ operating costs is essential for 

hospital managers to maximize their revenues, while 

maintaining the level of service desired. Most hospital 

managers allocate manpower at cashier counters and 

dispensaries during peak and off-peak hours according 

to their past experiences. However, this manual 

approach may not be adequate for determining the 

optimal number of cashers and pharmacists in response 

to time-varying demands.  

Very few previous studies in this area have 

developed optimization models for manpower 

allocation in hospitals, although some have addressed 

the optimization problems in allocating beds to 

inpatients from different divisions, and scheduling 

appointments with doctors, nurses, and pharmacists. In 

a study conducted by Creemers et al. (2012), an 

optimization model for assigning a set of predefined 

outpatient time slots to doctors from different divisions 

was presented in order to minimize the total expected 

weighted waiting time of patients. Xu and Liu (2011) 

developed an optimization model to solve the bed 

arrangement problem in one hospital, where a patient’s 

priority is determined by the severity of his/her illness 

in order to reduce the amount of time beds spend 

unoccupied (in other words, to increase the utilization 

of beds). Some past studies have aimed to reduce the 

waiting times of patients, for instance, for cashiers 

(Chao, 2010), pharmacies (Afolabi and Erhun, 2003; 

Ndukwe et al., 2011), consulting rooms (Jerbi and 

Kamoun, 2009; Palvannan and Teow, 2010), and beds 

(Joustra et al., 2009; Hu et al., 2011). To the authors’ 

knowledge, none of the previous research has 

developed optimization models for optimal manpower 

allocation for cashiers and pharmacists. The lack of a 

systematic approach for allocating optimal time-varying 

numbers of cashiers and pharmacists motivates us to 

develop the optimization model we present here. 

This paper presents a bi-objective optimization 

model to determine optimal manpower allocation at the 

cashier counter, dispensary, and pharmacy at different 

time periods of a given day in a large hospital. The 

main decision variables are the time-varying numbers 

of cashiers and pharmacists and the two objectives are 

to minimize the total patient wait time and the total 

operating cost of the hospital. To effectively take into 

account time-varying or non-stationary arrival rates of 

patients and describe queue lengths in such a dynamic 

system, the point-wise fluid-based approximation 

method is adopted to construct a dynamic queueing 

network. Then, the bi-objective optimization model is 

formulated based on the dynamic queueing network.  

We apply the weighted sum method (Zadeh, 1963; 

Hwang and Masud, 1979) to address the bi-objective 

optimization model, where the two objectives are 

transformed into a single objective by assigning weight 

parameters. In this transformation, the single objective 

is to minimize the weighted waiting costs of patients 

and operational costs of the hospital. The optimal 

solution obtained by the transformed method is a Pareto 

optimal solution of the original bi-objective 

optimization problem when a set of weight parameters 

is given. Readers can refer to Miettinen (1999) and 

Steuer (1989) for information on multi-objective 

programming. For further discussion about the choice 

of weights, please see Marler and Arora (2004). 
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Figure 1: The dynamic queueing network constructed for the manpower allocation problem in this study 

 

2. PROBLEM DESCRIPTION 

Typically, in a large hospital in Taiwan, doctors 

will generate and transfer prescriptions to the 

dispensary after examining patients, where pharmacists 

fill prescriptions that will be delivered to the pharmacy 

for patients to pick up. In the meantime, patients leave 

consulting rooms and wait for cashiers to pay their bill 

before picking up their prescriptions according to their 

assigned serial number at the pharmacy counter.  

This system process can be described as a dynamic 

queueing network, as shown in Figure 1. The queueing 

system consists of three waiting points (Cashier, 

Pharmacy, and Dispensary) and two flow subsystems 

(patient flow and prescription flow). The upper half of 

this system represented by dotted-line arcs is the 

prescription-flow subsystem, while the lower half of 

this system represented by solid-line arcs is the 

patient-flow subsystem. In the patient-flow subsystem, 

the arc coming from the left to the Cashier denotes the 

arrival of patients at the Cashier at time t (𝜆𝑡
𝑐). The arc 

going from the Cashier denotes the serviced amount at 

Cashier at time t (𝜈𝑡
𝑐), which equals the arrival amount 

of patients at the Pharmacy at time t (𝜆𝑡
𝑝

). Patients will 

enter the queue at the Pharmacy after they have been 

serviced (i.e., pay their bill) at the Cashier. The arc 

leaving the Pharmacy denotes the serviced amount at 

the Pharmacy at time t (𝜈𝑡
𝑝
) (i.e., the patients who have 

received their filled prescriptions and leave the hospital). 

In the prescription-flow subsystem, the arc coming from 

the left to the Dispensary denotes the arrival of 

prescriptions at the Dispensary at time t (𝜆𝑡
𝑑). The arc 

going from the Dispensary denotes the serviced amount 
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at the Dispensary at time t (𝜈𝑡
𝑑). Since the maximum 

service capacity at the Pharmacy at time t is determined 

by the serviced amount at the Dispensary at time t, this 

arc also denotes the maximum service capacity of the 

Pharmacy at time t (𝑆𝑡
𝑝
) (i.e., the filled prescriptions 

which will be delivered to the Pharmacy). We can make 

the following assumptions as we develop the 

optimization model: 

 The time-varying arrival rates at each service 

facility, system service rates, employees’ salaries 

per time unit, and patients’ waiting costs per time 

unit are given. 

 The time spent by patients on walking from 

consulting rooms to the Cashier and from the 

Cashier to the Pharmacy are ignored for 

simplicity and without loss of generality. 

 The time spent on delivering prescriptions from 

the Dispensary to the Pharmacy is ignored for 

simplicity and without loss of generality.  

 Prescriptions considered in this study involve 

common or chronic diseases drugs. Drugs for rare 

diseases drugs are not included. 

 

3. POINT-WISE FLUID-BASED 

APPROXIMATION APPROACH AND 

OPTIMIZATION MODELS 

    A point-wise fluid-based approximation approach 

is adopted to construct the dynamic queueing network, 

which is encapsulated in the proposed optimization 

model for determining optimal time-varying numbers of 

cashiers and pharmacists in a large hospital. The 

notations used to present the optimization model are as 

follows. 

Parameters: 

𝜆𝑡
𝑐   The patient arrival rate at the Cashier at 

time t  

𝜆𝑡
𝑑  The prescription arrival rate at the 

Dispensary at time t  

𝜆𝑡
𝑝

 The patient arrival rate at the Pharmacy at 

time t  

𝜌𝑡
𝑐  The capacity utilization ratio at the 

Cashier at time t  

𝜌𝑡
𝑑 The capacity utilization ratio at the 

Dispensary at time t  

𝐶𝑤𝑎𝑖𝑡  The waiting cost of patients(dollars/time) 

𝑊𝑤𝑎𝑖𝑡 Weight for the waiting cost of patients 

𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑐  The service rate at the Cashier for each 

time 

𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑑  The service rate per unit time at the 

Dispensary 

𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑝

 The service rate per unit time at the 

Pharmacy 

𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑐  The unit-time service cost of a counter at 

the Cashier (dollars/time) 

𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑑  The unit-time service cost of a pharmacist 

at the Dispensary (dollars/time) 

𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑝

 The unit-time service cost of a counter at 

the Pharmacy (dollars/time) 

𝑊𝑠𝑒𝑟𝑣𝑖𝑐𝑒  Weight for the service cost of the hospital 

I The length of each time unit (minutes) 

T The number of time units 

𝑦𝑚𝑎𝑥
𝑐  The upper bound of the number of counters 

at the Cashier 

𝑦𝑚𝑎𝑥
𝑑  The upper bound of the number of 

pharmacists at the Dispensary 

𝑦𝑚𝑎𝑥
𝑝

 The upper bound of the number of the 

counters at the Pharmacy 

Endogenous Variables： 

𝑥𝑡
𝑐 The queue length of patients at the Cashier 

at time t  

𝑥𝑡
𝑑  The queue length of prescriptions at the 

Dispensary at time t  

𝑥𝑡
𝑝
 The queue length of patients at the 

Pharmacy at time t  

𝜈𝑡
𝑐  The serviced amount at the Cashier at time t  

𝜈𝑡
𝑑  The serviced amount at the Dispensary at 



time t  

𝜈𝑡
𝑝

 The serviced amount at the Pharmacy at 

time t  

𝑆𝑡
𝑐 The service capacity at Cashier at time t  

𝑆𝑡
𝑑 The service capacity at Dispensary at time t  

Decision Variables： 

𝑦𝑡
𝑐 The number of Cashier counters open at 

time t (manpower allocation) 

𝑦𝑡
𝑑  The number of pharmacists available in 

Dispensary at time t (manpower allocation) 

𝑦𝑡
𝑝

 The number of Pharmacy counters open at 

time t (manpower allocation) 

The multi-objective optimization model for the 

M/M/1 manpower allocation problem: 

Minimize       𝐼 × 𝐶𝑤𝑎𝑖𝑡(∑ 𝑥𝑡
𝑐𝑇

𝑡=1 + ∑ 𝑥𝑡
𝑝𝑇

𝑡=1 ), 𝐼 ×

(𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑐 ∑ 𝑦𝑡

𝑐𝑇
𝑡=1 + 𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑑 ∑ 𝑦𝑡
𝑑𝑇

𝑡=1 +

𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑝 ∑ 𝑦𝑡

𝑝𝑇
𝑡=1 )    (1) 

Subject to     𝑥𝑡+1
𝑐 = 𝑥𝑡

𝑐 + 𝜆𝑡
𝑐 − 𝜈𝑡

𝑐  , ∀𝑡,   (2) 

𝑥𝑡+1
𝑑 = 𝑥𝑡

𝑑 + 𝜆𝑡
𝑑 − 𝜈𝑡

𝑑  , ∀𝑡,   (3) 

 𝑥𝑡+1
𝑝

= 𝑥𝑡
𝑝

+ 𝜆𝑡
𝑝

− 𝜈𝑡
𝑝

 , ∀𝑡,   (4) 

 𝜈𝑡
𝑐 − 𝑆𝑡

𝑐 × 𝜌𝑡
𝑐 = 0, ∀𝑡,   (5) 

 𝜈𝑡
𝑑 − 𝑆𝑡

𝑑 × 𝜌𝑡
𝑑 = 0, ∀𝑡,   (6) 

𝜈𝑡
𝑝

= 𝜈𝑡
𝑑 = 𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑝
× 𝑦𝑡

𝑝
  ∀𝑡,   (7) 

 𝑆𝑡
𝑐 = 𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑐 × 𝑦𝑡
𝑐 , ∀𝑡,   (8) 

 𝑆𝑡
𝑑 = 𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑑 × 𝑦𝑡
𝑑 , ∀𝑡,   (9) 

 𝜌𝑡
𝑐 = 𝑥𝑡

𝑐 (𝑥𝑡
𝑐 + 1)⁄ , ∀𝑡,  (10) 

 𝜌𝑡
𝑑 = 𝑥𝑡

𝑑 (𝑥𝑡
𝑑 + 1)⁄ , ∀𝑡,  (11) 

1 ≤ 𝑦𝑡
𝑐 ≤ 𝑦𝑚𝑎𝑥

𝑐 , ∀𝑡 =  1, 2, … , 𝑇,  (12) 

𝑥𝑡
𝑐 ≥ 0, ∀𝑡 =  1, 2, … , 𝑇,  (13) 

1 ≤ 𝑦𝑡
𝑑 ≤ 𝑦𝑚𝑎𝑥

𝑑 , ∀𝑡 =  1, 2, … , 𝑇,  (14) 

𝑥𝑡
𝑑 ≥ 0, ∀𝑡 =  1, 2, … , 𝑇.  (15) 

1 ≤ 𝑦𝑡
𝑝

≤ 𝑦𝑚𝑎𝑥
𝑝

, ∀𝑡 =  1, 2, … , 𝑇,  (16) 

𝑥𝑡
𝑝

≥ 0, ∀𝑡 =  1, 2, … , 𝑇,  (17) 

The objective function (1) is to minimize the 

waiting cost for patients at the Cashier and Pharmacy 

(the first term) and the operational cost of the hospital 

at the Cashier, Dispensary, and Pharmacy (the second 

term). Note that the queue length at the Dispensary is 

not taken into account since patients do not wait for 

prescriptions at the Dispensary. Constraints (2)-(11) 

are established by the point-wise fluid-based 

approximation approach. Specifically, constraints 

(2)-(4) are the flow conservation equations at the 

Cashier, Dispensary, and Pharmacy, respectively. 

Constraints (5)-(7) determine the serviced amounts at 

the Cashier, Dispensary, and Pharmacy, respectively. 

Constraints (8) and (9) determine the maximum 

service capacities at the Cashier and Dispensary, 

respectively. Constraints (10) and (11) are the 

capacity utilization ratios at the Cashier and 

Dispensary, respectively, for the M/M/1 queueing 

system. Constraints (12), (14) and (16) present the 

minimum and maximum manpower requirements at 

the Cashier, Dispensary, and Pharmacy, respectively, 

set by the hospital, where the lower bounds all 

correspond to 1 and the upper bounds correspond to 

𝑦𝑚𝑎𝑥
𝑐 , 𝑦𝑚𝑎𝑥

𝑑  and 𝑦𝑚𝑎𝑥
𝑝

, respectively. Constraints (13), 

(15) and (17) require nonnegative queue lengths. 

By applying the weighted-sum method to solve 

the bi-objective optimization problem, we assign two 

weights (𝑊𝑤𝑎𝑖𝑡) and (𝑊𝑠𝑒𝑟𝑣𝑖𝑐𝑒) to the waiting cost 

and operational cost in the objective function, 

respectively. The objective function (1) can be 

transformed into a single-objective with weight 

parameters as follows: 

𝐼 × [𝑊𝑤𝑎𝑖𝑡𝐶𝑤𝑎𝑖𝑡(∑ 𝑥𝑡
𝑐𝑇

𝑡=1 + ∑ 𝑥𝑡
𝑝𝑇

𝑡=1 ) +

𝑊𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑐 ∑ 𝑦𝑡

𝑐𝑇
𝑡=1 + 𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑑 ∑ 𝑦𝑡
𝑑𝑇

𝑡=1 +

𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑝 ∑ 𝑦𝑡

𝑝𝑇
𝑡=1 )],           (18) 

where the transformed objective (18) is the total 

weighted cost of this system. 

In addition, we can establish the optimization 

model for M/G/1 queueing system. In this model, 



instead of (10) and (11), capacity utilization ratio 

function constraints with a general service time 

distribution (M/G/1 queue) are (19) and (20) as: 

(Cashier) 𝜌𝑡
𝑐 =

𝑥𝑡
𝑐+1−√(𝑥𝑡

𝑐)
2

+2×(𝐶𝑠)2×𝑥𝑡
𝑐+1

1−(𝐶𝑠)2 , ∀𝑡, (19) 

(Dispensary)𝜌𝑡
𝑑 =

𝑥𝑡
𝑑+1−√(𝑥𝑡

𝑑)
2

+2×(𝐶𝑠)2×𝑥𝑡
𝑑+1

1−(𝐶𝑠)2 , ∀𝑡. (20) 

The objective function and the other constraints are the 

same as those for the M/M/1 queueing system. 

4. NUMERICAL EXPERIMENTS 

4.1 Data preparation 

To examine the proposed optimization model, we 

generate a problem instance based on real data provided 

by a large hospital (M) in Taipei. The patient arrival 

data were collected by the hospital between December 

2013 and January 2014, including 43 weekdays (i.e., 

every Monday to Friday). Arrival data were collected 

every 10 minutes from 7AM to 11PM on each of those 

days.  

A time interval (I) corresponds to 60 minutes. The 

service rate 𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑐  is 60 (persons/time). The upper 

bound of the number of Cashier counters (𝑦𝑚𝑎𝑥
𝑐 ) is 10. 

Based on an employee’s monthly salary, the service cost 

at the Cashier counter can be computed as 4 

dollars/minute per person. Then 𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑐  is 240 

dollars/time unit per person. The service rate 𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑑  

is 0.67. The upper bound of the number of pharmacists 

𝑦𝑚𝑎𝑥
𝑑  is 17. The service cost at the Dispensary is 7 

dollars/minute per person. This implies that 𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑑  is 

420 dollars/time per person. Thus, the service rate 

 𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑑  is 120 (persons/time). The upper bound of the 

number of Pharmacy counters 𝑦𝑚𝑎𝑥
𝑝

 is 8. The service 

cost at the Pharmacy is 7 dollars/minute per person, or 

𝐶𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑝

 is 420 dollars/time per person.  Consider that 

the average salary per month is 45,888 dollars in the 

year 2014 provided by Directorate-General of Budget, 

Accounting and Statistics, Executive Yuan R.O.C. 

(Taiwan); the patients’ waiting cost ( 𝐶𝑤𝑎𝑖𝑡 ) is 5 

dollars/minute per person. Here, we assign the same 

weight for the patients’ waiting cost and the hospital’s 

operational cost. In other words, 𝑊𝑤𝑎𝑖𝑡 and 𝑊𝑠𝑒𝑟𝑣𝑖𝑐𝑒  

are both set to be 0.5. 

The MINOS solver of GAMS was applied to solve 

the optimization model in Section 3. The numerical 

experiments were implemented on a computer with 

Core i7-2600 3.4GHz CPU, 4.00GB Ram, equipped 

with Microsoft Windows 7. With the above parameters, 

the CPU time for GAMS to solve the problem instance 

was 0.109 seconds. 

4.2 Numerical Results 

We compare the optimal solution of the model 

with hospital M’s current manpower allocation. The 

optimal numbers of cashiers do not significantly differ 

from those of hospital M’s current allocation. At the 

Dispensary, the optimal numbers of pharmacists are less 

than those of the hospital’s current allocation in the 

morning and afternoon; while the optimal number is 

more than that of the hospital’s current allocation in the 

evening. In addition, the optimal number of Pharmacy 

counters is less than those of the hospital’s current 

allocation in the morning and afternoon; while in the 

evening, they are almost the same. 

The optimal manpower obtained by the model can 

reduce the queue length at the Cashier from 11.68 

(persons) to 6.05 (persons). The numerical results show 

that at the Pharmacy, the optimal solution can reduce 

the queue length from 60.55 (persons) to 0 (persons), 

especially in the evening. 

Furthermore, the service cost corresponding to the 

Cashier decreases by 2,380.87 dollars with the optimal 

solution, compared to the hospital’s current allocation. 

The waiting cost decreases by 26,982.93 dollars. At the 

Pharmacy, the service cost decreases by 10,824 dollars 

while the waiting cost decreases by 290,631.9 dollars. 

The total service cost decreases from 105,813.49 dollars 

to 90,022.92 dollars if the optimal solution is used as 



opposed to the current allocation. That is, the hospital 

can save 15,790.57 dollars, or 15% of its current 

operating cost. The total waiting cost can be reduced 

from 34,675.53 dollars to 29,060.7 dollars (or 91.6%) 

using the optimal solution. Therefore, the optimal 

solution obtained by the model can significantly reduce 

the operating cost of the hospital as well as increase 

service quality. 

5. CONCLUSION AND FUTURE RESEARCH 

This paper adopts the point-wise fluid-based 

approximation approach to construct the dynamic 

queueing network, which is then encapsulated in the 

proposed bi-objective optimization model for 

determining the optimal number of cashiers and 

pharmacists in a large hospital. The numerical results of 

the test instance generated based on data for a large 

hospital in Taipei show that the proposed optimization 

model can provide the optimal allocation of manpower 

which significantly reduces waiting and operating costs. 

In sum, the hospital can save about 15% of its operating 

cost and decrease 91.6% of the waiting cost per day. 

In future studies, the proposed dynamic queueing 

network modeling approach can be applied to determine 

the optimal manpower allocation in several other areas, 

such as check-in counters in airports and restaurants as 

well as service counters in banks. 
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